Surveys for Presence of ESA-Listed Salmonids on Naval Base Kitsap Property

FINAL report prepared for U.S. Navy by U.S. Fish and Wildlife Service

12/30/2020

Prepared by:

Jeffery R. Johnson

Prepared for U.S. Navy, Contract #'s: N68742-18-MP-001VX N68742-19-MP-001VX N68742-19-MP-002VX N68742-20-MP-001VX

Table of Contents

Acronym Definitions
Recommended Citation
Introduction
Methods7
Study Area7
Puget Sound Steelhead Survey Methodology
Hood Canal Summer-Run Chum Survey Methodology
Puget Sound Chinook Survey Methodology
Habitat Assessments
Results
Naval Base Kitsap Bangor9
Naval Hospital Bremerton 10
Jackson Park10
Naval Base Kitsap Keyport 11
Manchester Fuel Department11

Toandos Buffer Zone11
Zelatched Point13
Habitat Assessments 13
Conclusions 14
Suggested Future Actions16
References
Tables
Figures
Appendices
A.A. Fish Datapdf
A.B. Habitat Datapdf

Acronym Definitions

ESA: Endangered Species Act

FWS: U. S. Fish and Wildlife Service

NBK: Naval Base Kitsap

HCSC: Hood Canal Summer-Run Chum

NMFS: National Marine Fisheries Service

MLLW: Mean Lower Low Water

Recommended Citation

Johnson, J.R. 2020. Surveys for Presence of ESA-Listed Salmonids on Naval Base
Kitsap Property. Western Washington Fish and Wildlife Conservation
Office, U.S. Fish and Wildlife Service. Final report to U.S. Navy.
12/30/2020.

Introduction

The United States Navy (Navy) is required to protect Endangered Species Act (ESA) listed species by three legal statutes: 1) The Sikes Act, which requires military installations to provide for the conservation and rehabilitation of natural resources; 2) Section 7(a)(1) of the ESA, which requires federal agencies to use their authority, where feasible, to carry out programs for the conservation of endangered and threatened species; 3) Section 7(a)(2) of the ESA, which requires federal agencies to ensure that any action authorized, funded, or carried out by the agency is not likely to jeopardize the continued existence of any listed species, or result in the destruction or adverse modification of habitat of such species. To meet these requirements, the Navy contracted the U.S. Fish and Wildlife Service (FWS) to survey streams on Naval Base Kitsap (NBK) property to assess presence of ESA-listed salmonids and habitat conditions.

The primary species of concern in this study included Puget Sound steelhead (*Oncorhynchus mykiss*), Hood Canal summer-run chum (*O. keta*, HCSC hereafter), Puget Sound Chinook (*O. tshawytscha*), and bull trout (*Salvelinus confluentus*). To meet the objectives, the FWS completed a series of electrofishing, spawner, dipnet/snorkel, and beach seine surveys over the course of 10 months. The objectives of this work were to: 1) determine if ESA-listed salmonids were present on NBK property and 2) determine if habitat conditions suggested their presence was likely. Many of the streams on NBK property have never been surveyed, or survey data was outdated. These new data would be used to 1) establish baseline information in some of the watersheds, or provide updated information; 2) help prioritize habitat management actions which will benefit ESA-listed salmonids; and 3) provide information that will assist the Navy in conducting ESA section 7(a)(2) consultations with the FWS and National Marine Fisheries Service (NMFS) for future actions which may impact freshwater habitat.

Methods

Study Area

The scope of work identified six different NBK properties with eight streams suitable for surveys (Figures 1, 2, 3 and 4). A sampling strategy was developed for each stream based on the potential for listed species, except for bull trout due to logistic constraints. Habitat assessments were also completed on a subset of streams to take the place of juvenile Chinook surveys that were cancelled due to COVID-19. Because of the potential differences in listed species, sampling varied by stream as described below and in Table 1.

The study streams varied in length from 80 to >1000 meters, with some contained entirely on Navy property, while others contained habitat extending beyond Navy property. Streams contained within Navy property boundaries included: Zelatched, Toandos Stream 2, and the Cattail Basin stream. The following streams extended beyond the Navy property boundaries: Beaver Creek, Toandos Streams 1 and 3, Keyport, and the Naval Hospital stream. All streams entered Puget Sound on Navy property and were therefore sampled from the marine environment upstream to their terminus, the end of suitable habitat, or until we reached the Navy property boundary.

All the streams drained into waters supporting Puget Sound steelhead and Chinook salmon (Figures 1, 2, 3 and 4) and were expected to be sampled for these species. Based on size and gradient, all the streams had the potential for use by Puget Sound steelhead; however, these streams were expected to be too small for spawning by adult Chinook salmon and were only sampled for non-natal use by juvenile Chinook. Due to COVID-19, only one sampling event occurred at every stream for juvenile Chinook. Five streams, including Zelatched, all three Toandos streams, and the Cattail Basin stream drain into Hood Canal six to 20 kilometers from documented HCSC spawning activity and therefore had the potential for use by HCSC (Sands et. al. 2009). Thus, the surveys for HCSC described below were only completed on these streams, with the exception of the Cattail Basin stream because it was a late addition to the project.

Puget Sound Steelhead Survey Methodology

Any *O. mykiss* with access to Puget Sound would be considered an ESA-listed Puget Sound steelhead. Streams without barriers to Puget Sound were sampled for steelhead with single-pass backpack electrofishing (400 v, 30 hz, 15% duty cycle), following Temple and Pearson (2007). Surveys were conducted with a single backpack electrofisher unit (Smith-Root model LR-24) progressing upstream from the lowest point possible considering saltwater influence. A team of two to three netters accompanied the electrofisher and collected all fish encountered. All captured fish were anesthetized with MS-222, identified to species, opportunistically measured for length and weight, and released after recovery at the capture location.

Hood Canal Summer-Run Chum Survey Methodology

Streams entering Hood Canal were surveyed for spawning summer-run chum from August to October 2019 (Haymes 2000; Sands et. al 2009). The streams were approximately 5 to 20 km from the nearest known spawning activity by HCSC, and had not previously been surveyed for HCSC (Sands et. al 2009). Four visual spawner surveys were conducted during the typical spawning window of HCSC (late August through early October). The lowest 100 meters of each stream was surveyed moving upstream looking for evidence of spawning such as redds or carcasses. One stream that enters Hood Canal (Cattail Basin stream) was not surveyed for spawning HCSC because this stream was a late addition to the project.

Puget Sound Chinook Survey Methodology

The original study design was to survey all streams without barriers to Puget Sound for non-natal juvenile Chinook use with nighttime dipnetting from February to May. However, due to COVID-19, only

a single sampling event was completed at all streams in late February 2020. Dipnetting was performed at least 30 minutes after sunset and consisted of two samplers walking upstream with artificial lights. If a fish was encountered, it was captured with a dip net, anesthetized with MS-222, identified, and released after recovery at the capture location. When conditions allowed (i.e., enough water), nighttime snorkel surveys in an upstream manner was employed. Additionally, the stream mouth and adjacent shoreline was sampled with a 30-meter beach seine with 4mm mesh (Beamer et al. 2003; 2013). All fish captured in the beach seine were anesthetized with MS-222, identified, and released. The Cattail Basin stream was not surveyed for non-natal use by juvenile Chinook because it was a late addition to the project.

Habitat Assessments

The Northwest Forest Management Plan habitat assessment protocol (USFS 2017) was implemented at a subset of the streams, including Keyport, Beaver Creek, and all three Toandos streams (Figures 2, 3 and 4). Streams were chosen for these surveys based upon time constraints and qualitative ranking of monitoring-need based on site visits during fish surveys (i.e., fish presence). In short, the protocol is a transect-based method where 21 transects (11 major and 10 minor), are evenly spaced over 160 meters of stream. Channel metrics (e.g., bankfull width, wetted width, and depths) were measured at 11 transects, and pebble counts were conducted at all 21 transects. Additionally, large woody debris by area, pool count and area, and percent surface fines on pool tails was recorded along the entirety of the survey length. The protocol was modified slightly to fulfill assessment needs specific to the surveyed streams. Briefly, 1) Survey protocols started at the end of tidal influence at all locations; 2) Large woody debris was defined as greater than 1 meter in length and 0.3 meters in width; 3) Convex densiometer readings were included for each major transect and taken above the thalweg; 4) Entrenchment was not measured; 5) The full 160 meter survey was not completed when the stream was very small (i.e., not fish bearing).

Results

Naval Base Kitsap Bangor

The NBK Bangor main base has an unnamed stream within Cattail Basin (Cattail Basin stream hereafter) that enters the east side of Hood Canal (Figure 2). The Cattail Basin Stream was a late addition to the project and therefore was only sampled with backpack electrofishing on 07/20/2020, to survey for steelhead. Additionally, Trident Lakes on NBK Bangor was sampled on 07/20/2020. Approximately 400 meters of the Cattail Basin Stream was sampled with 865 seconds of backpack electrofishing. Seventy-five coastal cutthroat trout (*O. clarkii clarkii*) between 80 to 150 mm were captured (Table 1 and Appendix A). Also, three spine stickleback (*Gasterosteus aculeatus*), Pacific staghorn sculpin (*Leptocottus armatus*), and a flatfish (family *Pleuronectidae*), were captured in the lowest 100 meters of the stream. The shoreline of Trident Lakes on NBK Bangor was backpack electrofished for 350 seconds and sampled with a single seine haul. Largemouth bass (*Micropterus salmoides*), pumpkinseed sunfish (*Lepomis gibbosus*), and bluegill sunfish (*Lepomis macrochirus*) were captured in Trident lakes.

Naval Hospital Bremerton

The Naval Hospital Bremerton property has a single unnamed stream that enters Puget Sound on the Kitsap Peninsula (Figure 3). The channel on this property was dry on every occasion; therefore, no fish sampling was conducted.

Jackson Park

The Jackson Park property has a single unnamed stream that is connected to Puget Sound via a culvert that is approximately 100 meters in length (Figure 3). The entirety (approximately 100 meters) of the exposed portion of the unnamed stream on the Jackson Park property was sampled with 206 seconds of backpack electrofishing on 09/24/2019. The stream was small (approximately <0.1m average depth and <1.0m wetted width) at the time of sampling and no fish were seen or captured. The mouth of the culvert was sampled on 02/19/2020 with nighttime dipnetting and a single seine haul which captured 28 sculpin (*Cottus spp.*), while no fish were seen upstream of the culvert during any sampling (Table 1 and

Appendix A). The tide stage at Bangor Wharf was approximately 1 meter above Mean Lower Low Water (MLLW) when the beach seine was used (NOAA 2020).

Naval Base Kitsap Keyport

The NBK Keyport property has a single unnamed stream that feeds a lagoon prior to entering Puget Sound on the Kitsap Peninsula (Figures 1 and 2). The entire stream (472.5 meters) on the NBK Keyport property was sampled with 1,049 seconds of backpack electrofishing effort on 09/24/2019. This sampling captured 20 sculpin (*Cottus spp.*), and ten coastal cutthroat trout 154 to 177mm (Table 1 and Appendix A). The stream was sampled with nighttime dipnetting on 02/19/2020, and a single beach seine haul within the lagoon, with no fish seen or captured during that sampling event. The tide stage at Bangor Wharf was approximately 1.5 meters above MLLW when the beach seine was used (NOAA 2020).

Manchester Fuel Department

The Manchester Fuel Department property contains approximately the lowest 400 meters of Beaver Creek, which enters Puget Sound on the Kitsap Peninsula (Figure 3). All of Beaver Creek on the Manchester Fuel Department property was sampled with backpack electrofishing on 09/23/2019 with 2209 seconds of effort (Table 1 and Appendix A). This sampling captured 111 sculpin (*Cottus spp.*), 88 coho salmon (*O. kisutch*) from 41mm to 77mm (number measured; N=33), 144 coastal cutthroat trout from 27mm to 153mm (N=53), and 66 juvenile trout (*Oncorhynchus spp.*) from 18 to 50mm (N=19) that did not show clear diagnostics of species (Figure 5). Additionally, Beaver Creek was sampled via nighttime snorkel and two beach seine hauls at the mouth of the stream on 02/21/2020. During the snorkel survey, eight coastal cutthroat trout from approximately 100 to 400mm were observed. Additionally, 14 coho salmon fry were captured with dipnetting that were observed during the snorkel (30 to 75mm). The beach seine captured one sculpin (*Cottus spp.*). The tide stage at Bangor Wharf was approximately 0 meters above MLLW when the beach seine was used (NOAA 2020).

Toandos Buffer Zone

The Toandos Buffer Zone property has three unnamed streams that enter Hood Canal (Figure 4). All three streams were sampled with backpack electrofishing on 09/26/2019. Approximately the lowest 400 meters of Stream 1 was sampled with 1,143 seconds of backpack electrofishing effort (Table 1 and Appendix A). In Stream 1, 148 coastal cutthroat trout from 50 to 161mm (N=53), 25 sculpin (*Cottus spp.*) from 72 to 92mm (N=3), seven coho salmon from 65 to 105mm (N=7), and 12 juvenile trout (*Oncorhynchus spp.*) less than 50mm that did not show clear diagnostics of species were captured (Figure 4). In Stream 2, all of the habitat available was electrofished, which consisted of a single pool within the tidal zone approximately 10 meters in length, and a couple meters of the very small (approximately <0.5m wetted width, and <0.1m average depth) stream that entered that pool, with 181 seconds of effort (Table 1 and Appendix A). In Stream 2, one coastal cutthroat trout was captured (Table 1 and Appendix A). In Stream 3, the lowest 100 meters of stream was electrofished with 444 seconds of effort (Table 1 and Appendix A). This sampling captured five coastal cutthroat trout from 141 to 181mm, two coho salmon (104 and 112mm), and three sculpin (*Cottus spp.*) from 71 to 86mm.

The lowest 100 meters of all three of the Toandos Buffer Zone streams were surveyed for evidence of HCSC spawning on four occasions (08/08/2019, 09/05/2019, 09/26/2019 and 10/10/2019) (Table 1 and Appendix A). No evidence of spawning activity from HCSC was observed in any of the streams.

All three streams were sampled with nighttime dipnetting and a beach seine on 02/20/2020 (Table 1 and Appendix A). In the lowest 100 meters of Stream 1, two coastal cutthroat (64 and 93mm) and four chum salmon (38 to 42mm) were captured with dip nets (Figure 6). Additionally, eight chum salmon (38 to 43mm), three pink salmon (*O. gorbuscha*) (35 to 38mm), and four sculpin (*Cottus spp.*) were captured in two beach seine hauls near the mouth of Stream 1. The tide stage at Bangor Wharf was approximately 0 meters above MLLW when the beach seine was used near the mouth of Stream 1 (NOAA 2020). At Stream 2, three chum salmon (35 to 38mm) were captured with dipnetting in the lowest 10 meters of the stream. Additionally, nine chum salmon (33 to 40mm), seven pink salmon (28 to 40mm), and two shiner

perch (*Cymatogaster aggregata*) were captured in a single beach seine haul near the mouth of Stream 2. The tide stage at Bangor Wharf was approximately 0.5 meters above MLLW when the beach seine was used near the mouth of Stream 2 (NOAA 2020). At Stream 3, one 65mm coastal cutthroat trout and 16 chum salmon (30 to 44mm) were captured with dipnetting. Additionally, two chum salmon (38 and 42mm), one shiner perch, four sculpin (*Cottus spp.*), and five flatfish (family *Pleuronectidae*) were captured in a single beach seine haul near the mouth of Stream 3. The tide stage at Bangor Wharf was approximately 1 meter above MLLW when the beach seine was used near the mouth of Stream 3 (NOAA 2020).

Zelatched Point

The Zelatched Point property has a single unnamed stream that enters a lagoon that ultimately connects to Hood Canal in Dabob Bay (Figure 4). The channel was dry during the sampling window for steelhead and therefore could not be electrofished. The channel and the edge of the lagoon area were walked to survey for evidence of HCSC spawning on four occasions (08/08/2019, 09/05/2019, 09/26/2019 and 10/09/2019) (Table 1). No evidence of spawning activity from HCSC was observed in the stream or lagoon area. The stream was surveyed on 02/19/2020 with nighttime dipnetting. No fish were seen or captured in the stream. Additionally, three beach seine hauls were employed on the portion of the beach that the Navy owns, and captured no fish. Dipnetting was employed in the channel that connects the lagoons to Dabob Bay, and two chum salmon (39 and 43mm) were captured (Table 1 and Appendix A). Two beach seine hauls were conducted in the lagoon area and captured three chum salmon (35 to 44mm), two pink salmon (34 and 36mm), six three-spine stickleback, and 14 sculpin (*Cottus spp.*). The tide stage at Bangor Wharf was approximately 0.15 meters below MLLW when the beach seine was used (NOAA 2020).

Habitat Assessments

Habitat surveys were conducted at NBK Keyport, Manchester Fuel Department, and all three Toandos Buffer Zone streams. The data for these surveys are presented in Appendix B. Naval Base Kitsap Keyport was surveyed a full protocol length (160 meters) and the remaining stream was walked until the property boundary at 472.5 meters total length to include distances to notable features (Appendix B). Data was collected on bankfull width, wetted width, depth, large woody debris, pools, and in-stream cover. Data was not collected on percent surface fines on pool tails, and pebble counts were not conducted at this site. The stream at Naval Base Kitsap Keyport is generally shallow, narrow, low gradient, with some pools and large woody debris present (Table 2).

At the Manchester Fuel Department, Beaver Creek was surveyed two full protocol lengths (320 meters) and mapped to the property boundary (391 meters total length) (Figure 3). Beaver Creek is the largest stream surveyed, and generally has quality, complex habitat for salmonids (Table 2). Stream 1 at the Toandos Buffer Zone property was surveyed a full protocol length and then mapped to a culvert feature at 472 meters total length. Stream 1 is the second largest stream surveyed, although it is shallow and narrow, it generally has quality, complex habitat for salmonids (Table 2). Stream 2 at the Toandos Buffer Zone property was surveyed for 80 meters only due to lack of flow. Stream 2 is the smallest and highest gradient stream surveyed for habitat, and has an abundance of large woody debris that create wood-step features (Table 2). Stream 3 at the Toandos Buffer Zone property was surveyed one full protocol length. Stream 3 is a low gradient, narrow, and the most shallow stream surveyed for habitat. At the Manchester Fuel Department and all three Toandos Buffer Zone streams, data was collected on bankfull width, wetted width, depth, large woody debris, pools, in-stream cover, percent surface fines on pool tails, and pebble counts.

Conclusions

From all fish surveys in all locations, no evidence of presence of any ESA-listed salmonids was observed on NBK property. Surveys were designed to maximize the probability of encountering ESA-

listed salmonids, which suggests there is low or no presence of ESA-listed salmonids in freshwater habitat on NBK properties that were visited. Generally, all of the streams are small and provide limited habitat for ESA-listed species. It is possible that there is intermittent use of these streams by ESA-listed salmonids and the surveys did not coincide with their presence. Furthermore, sampling effort (i.e., limited sampling of streams, a single year of observation), low abundance of species of interest, and potential limitations in sampling methodology may have resulted in low capture probability and missed detections.

No definitive steelhead were observed during any of the sampling activities. It is possible, but unlikely, that the surveys missed steelhead. Single pass backpack electrofishing was used, which generally provides high (>90%) probability of detection in small streams (Rodtka et. al. 2015). During electrofishing surveys at two properties (Manchester Fuel Department and Toandos Buffer Zone), juvenile trout less than 50 mm fork length were encountered (Figure 5). Field diagnostics for steelhead versus cutthroat trout can be ambiguous for individuals less than 50mm. However, given the abundance of coastal cutthroat trout in the locations where juvenile trout were recorded, and the lack of any definitive steelhead in the surveys, it is likely that these ambiguous individuals were coastal cutthroat trout. Additional sampling and genetic analysis could provide more certainty.

No evidence of summer chum spawning activity was observed in any of the surveyed streams. This is likely the result of limited habitat (i.e., low water) in the streams where HCSC may occur. The size of these streams makes it unlikely that spawners were present and missed, which supports the hypothesis of limited habitat availability. Additionally, all of the streams have variable connectivity to Hood Canal that appeared to be strongly influenced by tides and beach condition. Given this, years in which the streams may be utilized by spawning summer-run chum could be subject to high variation. To promote a better understanding of whether or not HCSC use these streams, a multiple year dataset with a sampling regime similar to what was implemented could provide more certainty. However, during the single sampling occasion for juvenile Chinook, chum salmon fry were encountered within all streams at the Toandos Buffer Zone property, and near the stream (i.e., lagoon) at the Zelatched Point property.

Based on their size, these chum salmon fry could be either HCSC or fall chum (WFC 2019). The lack of evidence of HCSC spawning in these streams suggests non-natal use if the chum encountered were summer-run chum. Additional sampling and genetic analysis could provide more certainty.

No juvenile Chinook were encountered during the single sampling occasion in late February in any of the streams. The goal was to sample all streams three additional times (during March, April and May) to cover the range in which the streams may be intermittently used by non-natal juvenile Chinook. Due to the limited sampling effort, strong conclusions regarding the use of these streams by Chinook salmon should not be made. The proposed sampling regime would have provided adequate information about presence, and could be implemented in the future.

Pacific salmonids require different habitat types throughout their life cycle, but generally they need stream habitat that are connected, cool, and complex (Quinn 2005). Intensive habitat surveys were completed at five streams to determine if sufficient habitat existed to support spawning and rearing for ESA-listed species (Appendix B). This data can be used to monitor changes in stream condition in the future, and provide insight on any observed changes in fish use. In general, the habitat data describes conditions of limited habitat availability for ESA-listed salmonids. Chiefly, the streams are narrow and shallow and unlikely to support large-bodied fishes, with the exception of Beaver Creek, the largest stream. Several of the streams were dry when visited, thus limiting their utility to support ESA-listed salmonids. Additionally, connectivity to Puget Sound is poor at all streams but Beaver Creek, and is likely a limiting factor.

Although there was no evidence of presence, or encounters with ESA-listed salmonids in any of the streams on the NBK properties surveyed, it is important to reiterate that this is not concluding absence. Constraints on effort, compromised survey design (i.e., COVID-19), low abundance of species of interest, intermittent use, and imperfect detection could all be responsible for missed detections of ESA-listed salmonids. For example, the surveys for juvenile Chinook salmon were reduced to a single survey event of all streams due to COVID-19. In addition, this work was completed during a single year

and many of these streams appear to have intermittent connection to Puget Sound. This suggests that use by ESA-listed fish could be intermittent as well, which would require multiple years of surveys to sufficiently evaluate use. The size of most streams suggests limited use. If feasible, additional monitoring of all streams could promote a better understanding of potential use by ESA-listed salmonids, especially in Beaver Creek, the largest stream.

Suggested Future Actions

- 1) Full sampling season for juvenile Chinook
- 2) Genetic analysis of juvenile trout
- 3) Genetic analysis of chum fry
- 4) Culvert rehabilitation at Jackson Park
- 5) Continued monitoring at all sites

References

- Beamer, E.M., A. McBride, R. Henderson and K. Wolf. 2003. The importance of non-natal pocket estuaries in Skagit Bay to wild Chinook salmon: an emerging priority for restoration. Skagit River System Cooperative Research Report.
- Beamer, E.M., W.T. Zackey, D. Marks, D. Teel, D. Kuligowski, and R. Henderson. 2013. Juvenile Chinook salmon rearing in small non-natal streams draining into the Whidbey Basin. Skagit River System Cooperative, LaConner, WA.
- Haymes J. 2000. Summer Chum Salmon Conservation Initiative, An Implementation Plan to Recover
 Summer Chum in the Hood Canal and Strait of Juan de Fuca Region. Supplemental Report No. 1,
 Revised Estimates of Escapement for Hood Canal and Straight of Juan de Fuca Natural Spawning
 Summer Chum Salmon Populations. Washington Department of Fish and Wildlife.

- National Oceanic and Atmospheric Administration (NOAA). 2020. Tides and Currents available at: www.tidesandcurrents.noaa.gov
- Quinn, TP. 2005. The Behavior and Ecology of Pacific Salmon and Trout. University of Washington Press, Seattle. 378 p.
- Rodtka, M.C., C.S. Judd, P.K. Aku, and K.M. Fitzsimmons. 2015. Estimating occupancy and detection probability of juvenile bull trout using backpack electrofishing gear in a west-central Alberta watershed. Canadian Journal of Fisheries and Aquatic Sciences, 72(5), pp.742-750.
- Sands, N.J., K. Rawson, K.P. Currens, W.H. Graeber, M.H. Ruckelshaus, R.R. Fuerstenberg, and J.B. Scott. 2009. Determination of independent populations and viability criteria for the Hood Canal summer chum salmon evolutionarily significant unit. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-101, 58 p.
- Temple, G. M. and T. N. Pearsons. 2007. Electrofishing: backpack and drift boat. Pages 95-132 in D. H.
 Johnson, B. M. Schrier, J. S. O'Neal, J. A. Knutzen, X. Augerot, T. A. O'Neil, and T. N.
 Pearsons. Salmonid field protocols handbook: techniques for assessing status and trends in salmon and trout populations. American Fisheries Society, Bethesda, MD.
- U.S. Forest Service (USFS). 2017. Field Protocol Manual. Aquatic and Riparian Effectiveness Monitoring Program. Regional Interagency Monitoring for The Northwest Forest Plan.
- Wild Fish Conservancy (WFC). 2019. 2018 Hood Canal Juvenile Chum Salmon Nearshore Habitat Use Assessment. Report from Wild Fish Conservancy to U.S. Navy.

Tables

Table 1. Salmonid species observed during specific sampling methodologies for nine streams on seven Naval Base Kitsap properties. Species observed are separated by stream and target species for each sampling method. No fish observed is represented by NA, while NS indicates no sampling was conducted. The species listed include those observed in the immediate vicinity of the streams (i.e., stream mouth).

	Method					
Stream	Hood Canal Summer-Run Chum	Puget Sound Chinook	Puget Sound Steelhead	All Methods		
Zelatched	NA	CHUM, PINK	NS	CHUM, PINK		
Toandos 1	NA	CTT, CHUM, PINK	CTT, COHO, UNKT	CTT, COHO, UNKT, CHUM, PINK		
Toandos 2	NA	CHUM, PINK	CTT	CTT, CHUM, PINK		
Toandos 3	NA	CTT, CHUM	CTT	CTT, CHUM		
Cattail Basin Stream	NS	NS	CTT	CTT		
Keyport	NS	NA	CTT	CTT		
Navy Hospital	NS	NS	NS	NS		
Jackson Park South	NS	NA	NA	NA		
Beaver Creek	NS	СТТ, СОНО	CTT, COHO, UNKT	CTT, COHO, UNKT		

CTT: Coastal Cutthroat Trout, COHO: Coho Salmon, CHUM: Fall or Summer-Run Chum Salmon, PINK: Pink Salmon, UNKT: Unidentified Juvenile Trout

Stream	Mean Wetted Width (m)	Mean Bankfull Width (m)	Mean Thalweg Depth (m)	Max Depth (m)	Pools / 100 meters	LWD / 100 meters	Mean Gradient (%)
Keyport	1.10	1.49	0.14	0.27	1.88	3.75	2
Beaver Creek	2.11	2.97	0.12	0.60	3.75	7.19	1
Toandos 1	1.45	2.39	0.09	0.40	4.38	5.00	3
Toandos 2	0.71	1.48	0.09	0.50	0.00	28.75	7
Toandos 3	1.19	1.96	0.06	0.13	0.00	3.13	2

Table 2. Summarized habitat data for the five streams where habitat surveys were conducted on Naval Base Kitsap properties using the Northwest Forest Management Plan habitat assessment protocol.

Figures

Figure 1. Locations of seven Naval Base Kitsap Properties with streams surveyed for presence of ESAlisted salmonids.

Figure 2. Locations of streams surveyed for ESA-listed salmonids on Naval Base Kitsap Keyport and Naval Base Kitsap Bangor.

Figure 3. Locations of streams surveyed for ESA-listed salmonids on Naval Hospital Bremerton and Jackson Park (NHB and JP) and Manchester Fuel Department properties owned by Naval Base Kitsap.

Figure 4. Locations of streams surveyed for ESA-listed salmonids on Zelatched Point and Toandos Buffer Zone properties owned by Naval Base Kitsap.

Figure 5. Image of a juvenile trout (Oncorhynchus spp.) captured on Naval Base Kitsap Property.

Figure 6. Image of a chum salmon fry captured on Naval Base Kitsap Property.

Appendix A

Attached pdf with data from all fish sampling.

Appendix A - Fish data

Definitions and Abbreviations

CTT: COASTAL CUTTHROAT

COHO: COHO SALMON

UNKT: UNKNOWN TROUT

COTSP: COTTID SPECIES

LMB: LARGEMOUTH BASS

PMKN: PUMKINSEED SUNFISH

BLG: BLUEGILL SUNFISH

CHUM: CHUM SALMON

PINK: PINK SALMON

 \sim : APPROXIMATE

All Length in mm

All weight in g

Black bars separate sampling methods, thin lines separate streams

Backpack Electrofishing					
date	property	stream	species	length	weight
9/23/2019	Manchester	Beaver	СОНО	58	2
9/23/2019	Manchester	Beaver	СОНО	70	4.2
9/23/2019	Manchester	Beaver	СОНО	72	4.6
9/23/2019	Manchester	Beaver	СОНО	61	2.7
9/23/2019	Manchester	Beaver	СОНО	61	2.8
9/23/2019	Manchester	Beaver	СОНО	65	3.3
9/23/2019	Manchester	Beaver	СОНО	77	5.7
9/23/2019	Manchester	Beaver	СОНО	64	2.6
9/23/2019	Manchester	Beaver	СОНО	60	2.4
9/23/2019	Manchester	Beaver	СОНО	68	3.6
9/23/2019	Manchester	Beaver	СОНО	67	3.8
9/23/2019	Manchester	Beaver	СОНО	73	4.6

9/23/2019	Manchester	Beaver	СОНО	62	2.7
9/23/2019	Manchester	Beaver	СОНО	57	2.5
9/23/2019	Manchester	Beaver	СОНО	60	2.9
9/23/2019	Manchester	Beaver	СОНО	63	3.2
9/23/2019	Manchester	Beaver	СОНО	63	3.2
9/23/2019	Manchester	Beaver	СОНО	75	4.5
9/23/2019	Manchester	Beaver	СОНО	70	4.1
9/23/2019	Manchester	Beaver	СОНО	60	2.3
9/23/2019	Manchester	Beaver	СОНО	73	4.5
9/23/2019	Manchester	Beaver	СОНО	67	3.9
9/23/2019	Manchester	Beaver	СОНО	68	3.8
9/23/2019	Manchester	Beaver	СОНО	58	2.2
9/23/2019	Manchester	Beaver	СОНО	68	NA
9/23/2019	Manchester	Beaver	СОНО	70	NA
9/23/2019	Manchester	Beaver	СОНО	68	NA
9/23/2019	Manchester	Beaver	СОНО	75	NA
9/23/2019	Manchester	Beaver	СОНО	72	NA
9/23/2019	Manchester	Beaver	СОНО	70	NA
9/23/2019	Manchester	Beaver	СОНО	66	3.3
9/23/2019	Manchester	Beaver	COTSP	87	7.2
9/23/2019	Manchester	Beaver	COTSP	78	6.3
9/23/2019	Manchester	Beaver	COTSP	79	5.6
9/23/2019	Manchester	Beaver	COTSP	77	5.6
9/23/2019	Manchester	Beaver	COTSP	57	1.9
9/23/2019	Manchester	Beaver	COTSP	83	6
9/23/2019	Manchester	Beaver	COTSP	83	6
9/23/2019	Manchester	Beaver	COTSP	60	2.5
9/23/2019	Manchester	Beaver	COTSP	77	4.7
9/23/2019	Manchester	Beaver	COTSP	58	2.3
9/23/2019	Manchester	Beaver	COTSP	79	3.5

9/23/2019	Manchester	Beaver	COTSP	81	7.4
9/23/2019	Manchester	Beaver	COTSP	69	3.7
9/23/2019	Manchester	Beaver	COTSP	61	NA
9/23/2019	Manchester	Beaver	COTSP	82	NA
9/23/2019	Manchester	Beaver	COTSP	64	NA
9/23/2019	Manchester	Beaver	COTSP	64	NA
9/23/2019	Manchester	Beaver	COTSP	61	NA
9/23/2019	Manchester	Beaver	COTSP	65	NA
9/23/2019	Manchester	Beaver	COTSP	71	NA
9/23/2019	Manchester	Beaver	COTSP	64	NA
9/23/2019	Manchester	Beaver	COTSP	59	NA
9/23/2019	Manchester	Beaver	COTSP	64	NA
9/23/2019	Manchester	Beaver	COTSP	63	NA
9/23/2019	Manchester	Beaver	COTSP	60	NA
9/23/2019	Manchester	Beaver	COTSP	80	NA
9/23/2019	Manchester	Beaver	COTSP	81	NA
9/23/2019	Manchester	Beaver	COTSP	65	NA
9/23/2019	Manchester	Beaver	CTT	69	3.9
9/23/2019	Manchester	Beaver	CTT	87	6.8
9/23/2019	Manchester	Beaver	CTT	97	9.1
9/23/2019	Manchester	Beaver	CTT	94	9.7
9/23/2019	Manchester	Beaver	CTT	103	15.4
9/23/2019	Manchester	Beaver	CTT	54	1.7
9/23/2019	Manchester	Beaver	CTT	120	16.4
9/23/2019	Manchester	Beaver	CTT	132	25.5
9/23/2019	Manchester	Beaver	CTT	140	27.2
9/23/2019	Manchester	Beaver	CTT	56	2.2
9/23/2019	Manchester	Beaver	CTT	93	8.6
9/23/2019	Manchester	Beaver	CTT	112	13.7
9/23/2019	Manchester	Beaver	CTT	63	3.8

9/23/2019	Manchester	Beaver	CTT	60	2.4
9/23/2019	Manchester	Beaver	CTT	64	2.8
9/23/2019	Manchester	Beaver	CTT	96	9.4
9/23/2019	Manchester	Beaver	CTT	73	4.5
9/23/2019	Manchester	Beaver	CTT	110	12.7
9/23/2019	Manchester	Beaver	CTT	56	2.4
9/23/2019	Manchester	Beaver	CTT	97	9.5
9/23/2019	Manchester	Beaver	CTT	80	5.7
9/23/2019	Manchester	Beaver	CTT	57	2.2
9/23/2019	Manchester	Beaver	CTT	53	1.6
9/23/2019	Manchester	Beaver	CTT	114	17.7
9/23/2019	Manchester	Beaver	CTT	62	2.7
9/23/2019	Manchester	Beaver	CTT	66	3.3
9/23/2019	Manchester	Beaver	CTT	54	2.1
9/23/2019	Manchester	Beaver	CTT	144	27.4
9/23/2019	Manchester	Beaver	CTT	66	3.1
9/23/2019	Manchester	Beaver	CTT	54	1.1
9/23/2019	Manchester	Beaver	CTT	130	21
9/23/2019	Manchester	Beaver	CTT	67	2.7
9/23/2019	Manchester	Beaver	CTT	55	0.9
9/23/2019	Manchester	Beaver	CTT	53	1.8
9/23/2019	Manchester	Beaver	CTT	92	7.8
9/23/2019	Manchester	Beaver	CTT	108	10.8
9/23/2019	Manchester	Beaver	CTT	112	16.6
9/23/2019	Manchester	Beaver	CTT	68	3.6
9/23/2019	Manchester	Beaver	CTT	120	16.5
9/23/2019	Manchester	Beaver	CTT	68	3.6
9/23/2019	Manchester	Beaver	CTT	127	21.5
9/23/2019	Manchester	Beaver	CTT	90	6.7
9/23/2019	Manchester	Beaver	CTT	95	8.2

9/23/2019	Manchester	Beaver	CTT	95	NA
9/23/2019	Manchester	Beaver	CTT	70	NA
9/23/2019	Manchester	Beaver	CTT	58	NA
9/23/2019	Manchester	Beaver	CTT	65	NA
9/23/2019	Manchester	Beaver	CTT	61	NA
9/23/2019	Manchester	Beaver	CTT	57	NA
9/23/2019	Manchester	Beaver	CTT	153	NA
9/23/2019	Manchester	Beaver	CTT	55	NA
9/23/2019	Manchester	Beaver	UNKT	45	1.4
9/23/2019	Manchester	Beaver	UNKT	47	1.2
9/23/2019	Manchester	Beaver	UNKT	47	1.2
9/23/2019	Manchester	Beaver	UNKT	38	0.6
9/23/2019	Manchester	Beaver	UNKT	49	1.4
9/23/2019	Manchester	Beaver	UNKT	50	1.6
9/23/2019	Manchester	Beaver	UNKT	34	0.4
9/23/2019	Manchester	Beaver	UNKT	50	NA
9/23/2019	Manchester	Beaver	UNKT	45	0.9
9/23/2019	Manchester	Beaver	UNKT	40	0.8
9/23/2019	Manchester	Beaver	UNKT	44	0.9
9/23/2019	Manchester	Beaver	UNKT	45	NA
9/23/2019	Manchester	Beaver	UNKT	36	NA
9/23/2019	Manchester	Beaver	UNKT	45	NA
9/23/2019	Manchester	Beaver	UNKT	47	NA
9/23/2019	Manchester	Beaver	UNKT	47	NA
9/23/2019	Manchester	Beaver	UNKT	48	NA
	Addition	nal fish captured b	out not weighed	below here	
9/23/2019	Manchester	Beaver	CTT	91 ADDITIONA	L CAPTURED
9/23/2019	Manchester	Beaver	СОНО	96 ADDITIONA	L CAPTURED
9/23/2019	Manchester	Beaver	UNKT	47 ADDITIONA	L CAPTURED
9/23/2019	Manchester	Beaver	COTSP	45 ADDITIONA	L CAPTURED

Comments: Five samplers, 2209 seconds of e-fishing effort.

date	property	stream	species	length	weight
9/26/2019	Toandos	Stream 1	CTT	114	16.5
9/26/2019	Toandos	Stream 1	CTT	85	5.6
9/26/2019	Toandos	Stream 1	CTT	100	9.8
9/26/2019	Toandos	Stream 1	CTT	134	24.7
9/26/2019	Toandos	Stream 1	CTT	83	6
9/26/2019	Toandos	Stream 1	CTT	62	3.5
9/26/2019	Toandos	Stream 1	CTT	65	3.2
9/26/2019	Toandos	Stream 1	CTT	94	9.2
9/26/2019	Toandos	Stream 1	CTT	61	2
9/26/2019	Toandos	Stream 1	CTT	66	2.8
9/26/2019	Toandos	Stream 1	CTT	129	25.1
9/26/2019	Toandos	Stream 1	CTT	109	13.8
9/26/2019	Toandos	Stream 1	CTT	89	7.8
9/26/2019	Toandos	Stream 1	CTT	67	3.6
9/26/2019	Toandos	Stream 1	CTT	158	46.2
9/26/2019	Toandos	Stream 1	CTT	90	9.3
9/26/2019	Toandos	Stream 1	CTT	63	3.5
9/26/2019	Toandos	Stream 1	CTT	56	2
9/26/2019	Toandos	Stream 1	CTT	130	20
9/26/2019	Toandos	Stream 1	CTT	145	32
9/26/2019	Toandos	Stream 1	CTT	114	16.1
9/26/2019	Toandos	Stream 1	CTT	124	18.6
9/26/2019	Toandos	Stream 1	CTT	100	10.7
9/26/2019	Toandos	Stream 1	CTT	117	16.5
9/26/2019	Toandos	Stream 1	CTT	57	2
9/26/2019	Toandos	Stream 1	CTT	85	5.6
9/26/2019	Toandos	Stream 1	CTT	110	13.8

9/26/2019	Toandos	Stream 1	CTT	124	21
9/26/2019	Toandos	Stream 1	CTT	111	13.9
9/26/2019	Toandos	Stream 1	CTT	138	25.9
9/26/2019	Toandos	Stream 1	CTT	124	21
9/26/2019	Toandos	Stream 1	CTT	127	24
9/26/2019	Toandos	Stream 1	CTT	84	6
9/26/2019	Toandos	Stream 1	CTT	108	12.6
9/26/2019	Toandos	Stream 1	CTT	90	7
9/26/2019	Toandos	Stream 1	CTT	90	8
9/26/2019	Toandos	Stream 1	CTT	64	3.2
9/26/2019	Toandos	Stream 1	CTT	54	1.1
9/26/2019	Toandos	Stream 1	CTT	103	10.7
9/26/2019	Toandos	Stream 1	CTT	97	10.2
9/26/2019	Toandos	Stream 1	CTT	86	7.9
9/26/2019	Toandos	Stream 1	CTT	109	15.8
9/26/2019	Toandos	Stream 1	CTT	50	1
9/26/2019	Toandos	Stream 1	CTT	82	5.1
9/26/2019	Toandos	Stream 1	CTT	120	20
9/26/2019	Toandos	Stream 1	CTT	60	1.5
9/26/2019	Toandos	Stream 1	CTT	62	1.5
9/26/2019	Toandos	Stream 1	CTT	144	33.6
9/26/2019	Toandos	Stream 1	CTT	161	43.7
9/26/2019	Toandos	Stream 1	CTT	129	22.4
9/26/2019	Toandos	Stream 1	CTT	84	6.9
9/26/2019	Toandos	Stream 1	CTT	86	7
9/26/2019	Toandos	Stream 1	CTT	57	2
9/26/2019	Toandos	Stream 1	COTSP	92	9.9
9/26/2019	Toandos	Stream 1	COTSP	72	6
9/26/2019	Toandos	Stream 1	COTSP	85	7.6
9/26/2019	Toandos	Stream 1	СОНО	65	3

9/26/2019	Toandos	Stream 1	СОНО	86	8.5	
9/26/2019	Toandos	Stream 1	СОНО	105	10.7	
9/26/2019	Toandos	Stream 1	СОНО	75	4.1	
9/26/2019	Toandos	Stream 1	СОНО	74	4.2	
9/26/2019	Toandos	Stream 1	СОНО	79	4.8	
9/26/2019	Toandos	Stream 1	СОНО	77	3	
9/26/2019	Toandos	Stream 1	UNKT	35	0.5	
9/26/2019	Toandos	Stream 1	UNKT	35	0.5	
	Additio	nal fish captured l	out not weighed	below here		
9/26/2019	Toandos	Stream 1	CTT	95 ADDITIONA	AL CAPTURED	
9/26/2019	Toandos	Stream 1	UNKT	11 ADDITIONA	AL CAPTURED	
9/26/2019	Toandos	Stream 1	COTSP	15 ADDITIONA	AL CAPTURED	
Comments: Five samplers, 1143 seconds of e-fishing effort.						

date	property	stream	species	length	weight
9/26/2019	Toandos	Stream 2	CTT	~100	NA

Comments: Five samplers, 181 seconds of e-fishing effort.

date	property	stream	species	length	weight
9/26/2019	Toandos	Stream 3	CTT	163	44.7
9/26/2019	Toandos	Stream 3	CTT	163	51.2
9/26/2019	Toandos	Stream 3	CTT	104	13
9/26/2019	Toandos	Stream 3	CTT	71	4.3
9/26/2019	Toandos	Stream 3	CTT	161	45.9
9/26/2019	Toandos	Stream 3	CTT	181	63.5
9/26/2019	Toandos	Stream 3	CTT	112	17.5
9/26/2019	Toandos	Stream 3	CTT	141	33.5
9/26/2019	Toandos	Stream 3	CTT	86	6.9
9/26/2019	Toandos	Stream 3	CTT	85	7.2

Comments: Five samplers, 444 seconds of e-fishing effort.

 date	property	stream	species	length	weight
9/26/2019	NBK Bangor	Cattail Basin	CTT	~80 - 150	NA

Comments: Six samplers, 865 seconds of e-fishing effort. We captured 75 CTT from approximately 80 - 150 mm.

date	property	stream	species	length	weight
9/26/2019	NBK Bangor	Trident Lakes	LMB	<100	NA
9/27/2019	NBK Bangor	Trident Lakes	PMKN	<100	NA
9/28/2019	NBK Bangor	Trident Lakes	BLG	<100	NA

Comments: Six samplers, approximately 200 seconds of e-fishing effort and 1 beach seine haul. The three species identified were numerous.

Snorkel						
data	property	streom	species	longth	weight	
uale	property	Stream	species	length	weight	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	СОНО	<50	NA	
2/21/2020	Manchester	Beaver	CTT	~100	NA	
	2/21/2020	Manchester	Beaver	CTT	~100	NA
---	-----------	------------	----------	---------	--------	-----------
	2/21/2020	Manchester	Beaver	СТТ	~100	NA
	2/21/2020	Manchester	Beaver	СТТ	~100	NΔ
	2/21/2020	Manchester	Beaver	СТТ	~100	NA
	2/21/2020	Manahastar	Deaver	СТТ	~100	INA NA
	2/21/2020	Manahastar	Deaver	СТТ	~150	INA NA
	2/21/2020	Manahastar	Deaver	СП	~130	NA
	2/21/2020	Wanchester	Deaver	CII	~400	NA
_			Dinn	otting		
	2/21/2020	Manalantan	Director	COLIO	75	
	2/21/2020	Manchester	Beaver	COHO	/5	NA
	2/21/2020	Manchester	Beaver	COHO	34	NA
	2/21/2020	Manchester	Beaver	СОНО	33	NA
	2/21/2020	Manchester	Beaver	СОНО	34	NA
	2/21/2020	Manchester	Beaver	СОНО	34	NA
	2/21/2020	Manchester	Beaver	СОНО	32	NA
	2/21/2020	Manchester	Beaver	СОНО	30	NA
	2/21/2020	Manchester	Beaver	СОНО	37	NA
	2/21/2020	Manchester	Beaver	СОНО	34	NA
	2/21/2020	Manchester	Beaver	СОНО	34	NA
	2/21/2020	Manchester	Beaver	СОНО	34	NA
	2/21/2020	Manchester	Beaver	СОНО	32	NA
	2/21/2020	Manchester	Beaver	СОНО	31	NA
	2/21/2020	Manchester	Beaver	СОНО	30	NA
	date	property	stream	species	length	weight
	2/20/2020	Toandos	Stream 1	CTT	93	NA
	2/20/2020	Toandos	Stream 1	CTT	64	NA
	2/20/2020	Toandos	Stream 1	CHUM	40	NA
	2/20/2020	Toandos	Stream 1	CHUM	42	NA
	2/20/2020	Toandos	Stream 1	CHUM	41	NA

2/20/2020	Toandos	Stream 1	CHUM	38	NA
date	property	stream	species	length	weight
2/20/2020	Toandos	Stream 2	CHUM	38	NA
2/20/2020	Toandos	Stream 2	CHUM	37	NA
2/20/2020	Toandos	Stream 2	CHUM	35	NA
date	property	stream	species	length	weight
2/20/2020	Toandos	Stream 3	CTT	65	NA
2/20/2020	Toandos	Stream 3	CHUM	38	NA
2/20/2020	Toandos	Stream 3	CHUM	43	NA
2/20/2020	Toandos	Stream 3	CHUM	39	NA
2/20/2020	Toandos	Stream 3	CHUM	38	NA
2/20/2020	Toandos	Stream 3	CHUM	38	NA
2/20/2020	Toandos	Stream 3	CHUM	30	NA
2/20/2020	Toandos	Stream 3	CHUM	37	NA
2/20/2020	Toandos	Stream 3	CHUM	35	NA
2/20/2020	Toandos	Stream 3	CHUM	40	NA
2/20/2020	Toandos	Stream 3	CHUM	38	NA
2/20/2020	Toandos	Stream 3	CHUM	40	NA
2/20/2020	Toandos	Stream 3	CHUM	38	NA
2/20/2020	Toandos	Stream 3	CHUM	44	NA
2/20/2020	Toandos	Stream 3	CHUM	37	NA
2/20/2020	Toandos	Stream 3	CHUM	43	NA
2/20/2020	Toandos	Stream 3	CHUM	35	NA
		Beach	n Seine		
date	property	stream	species	length	weight
2/21/2020	Manchester	Beaver	COTSP	NA	NA

Comments: Two seine hauls at mouth of Beaver Creek.

-	date	property	stream	species	length	weight
	2/20/2020	Toandos	Stream 1	CHUM	39	NA
	2/20/2020	Toandos	Stream 1	CHUM	40	NA
	2/20/2020	Toandos	Stream 1	CHUM	38	NA
	2/20/2020	Toandos	Stream 1	CHUM	40	NA
	2/20/2020	Toandos	Stream 1	CHUM	41	NA
	2/20/2020	Toandos	Stream 1	CHUM	43	NA
	2/20/2020	Toandos	Stream 1	CHUM	42	NA
	2/20/2020	Toandos	Stream 1	CHUM	39	NA
	2/20/2020	Toandos	Stream 1	PINK	37	NA
	2/20/2020	Toandos	Stream 1	PINK	35	NA
	2/20/2020	Toandos	Stream 1	PINK	38	NA
	2/20/2020	Toandos	Stream 1	COTSP	NA	NA
	2/20/2020	Toandos	Stream 1	COTSP	NA	NA
	2/20/2020	Toandos	Stream 1	COTSP	NA	NA
	2/20/2020	Toandos	Stream 1	COTSP	NA	NA

Comments: Two seine hauls at mouth of stream.

date	property	stream	species	length	weight
2/20/2020	Toandos	Stream 2	CHUM	33	NA
2/20/2020	Toandos	Stream 2	CHUM	36	NA
2/20/2020	Toandos	Stream 2	CHUM	38	NA
2/20/2020	Toandos	Stream 2	CHUM	38	NA
2/20/2020	Toandos	Stream 2	CHUM	35	NA
2/20/2020	Toandos	Stream 2	CHUM	37	NA
2/20/2020	Toandos	Stream 2	CHUM	40	NA
2/20/2020	Toandos	Stream 2	CHUM	40	NA
2/20/2020	Toandos	Stream 2	CHUM	37	NA
2/20/2020	Toandos	Stream 2	PINK	36	NA

2/20/2020	Toandos	Stream 2	PINK	28	NA
2/20/2020	Toandos	Stream 2	PINK	33	NA
2/20/2020	Toandos	Stream 2	PINK	40	NA
2/20/2020	Toandos	Stream 2	PINK	31	NA
2/20/2020	Toandos	Stream 2	PINK	33	NA
2/20/2020	Toandos	Stream 2	PINK	30	NA

Comments: One seine haul at mouth of stream.

date	property	stream	species	length	weight
2/20/2020	Toandos	Stream 3	CHUM	42	NA
2/20/2020	Toandos	Stream 3	CHUM	38	NA
2/20/2020	Toandos	Stream 3	COTSP	NA	NA
2/20/2020	Toandos	Stream 3	COTSP	NA	NA
2/20/2020	Toandos	Stream 3	COTSP	NA	NA
2/20/2020	Toandos	Stream 3	COTSP	NA	NA

Comments: One seine haul at mouth of stream.

date	property	stream	species	length	weight
2/20/2020	Zelatched	Lagoon	CHUM	43	NA
2/20/2020	Zelatched	Lagoon	CHUM	39	NA
2/20/2020	Toandos	Lagoon	CHUM	38	NA
2/20/2020	Toandos	Lagoon	CHUM	35	NA
2/20/2020	Toandos	Lagoon	CHUM	44	NA
2/20/2020	Toandos	Lagoon	PINK	34	NA
2/20/2020	Toandos	Lagoon	PINK	36	NA

Comments: Two seine hauls in lagoon and channelized area off NBK Bangor property.

Appendix B

Attached pdf with data from all habitat sampling.

Appendix B - Habitat data

All width and depth measurements in meters Pebble count measurements in mm Large woody debris location and measurements in meters Densiometer: reading from convex densiometer in portion of area (0-96) not occupied by cover left bf: left bankful left wet: left wetted right wet: right wetted right wet: right wetted right bf: right bankful 10%, 20%, 30%, 50%, 70%, 90%: Pool depths, legths and width in meters Black bars separate complete surveys X represents missing values, NA indicates no measurement required

Property:	Keyport	Date:	7/23/2020	
Stream:	Keyport			
		Major Transect	8	
Transect:	А	Densiometer:	4	
Depths	_	Gradient:	Х	
left bf	left wet	thalweg	right wet	right bf
0	0	0.25	0.24	0.24
10%	20%	50%	70%	90%
0.17	0.2	0.21	0.24	0.24
Bankf	ull Width:	0.86		
Wette	ed Width:	0.82		
Transect:	В	Densiometer:	1	
Depths		Gradient:	3%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.12	0	0
10%	20%	50%	70%	90%
0.05	0.12	0.12	0.1	0.04
Bankf	ull Width:	1.7		
Wette	ed Width:	1.1		
Transect:	С	Densiometer:	7	
Depths		Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0	0.08	0.1	0.01	0
10%	20%	50%	70%	90%
0.03	0.02	0.03	0.1	0.08
Bankf	ull Width:	1.3		
Wette	ed Width:	1.2		
Transect:	D	Densiometer:	4	

Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0.1	0.21	0.02	0
10%	20%	50%	70%	90%
0.12	0.14	0.21	0.21	0.18
Bankful	l Width:	1.35		
Wetted	Width:	1.1		
Transect:	Е	Densiometer:	1	
Depths		Gradient:	Х	
left bf	left wet	thalweg	right wet	right bf
0	0.05	0.12	0	0
10%	20%	50%	70%	90%
0.06	0.08	0.12	0.11	0.04
Bankful	l Width:	1.7		
Wetted	Width:	1.2		
Transect:	F	Densiometer:	29	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0.02	0.2	0	0
10%	20%	50%	70%	90%
0.17	0.15	0.22	0.16	0.11
Bankful	l Width:	2		
Wetted	Width:	1.8		
Transect:	G	Densiometer:	1	
Depths		Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.05	0	0
10%	20%	50%	70%	90%
0.05	0.05	0.06	0.04	0.05
Bankful	l Width:	1.35		
Wetted	Width:	1.2		
-		. .	a -	
Transect:	Н	Densiometer:	25	
Depths		Gradient:	3%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.18	0.18	0
10%	20%	50%	70%	90%
0.04	0.09	0.13	0.18	0.18
Bankful	Width:	1.3		
Wetted	Width:	0.8		
Transact	т	Densiomator	Ο	
Dentha	1	Gradient	10/2	
left hf	left wet	thalwag	1 /0 right wet	right bf
		ulaiweg	ingin wet	rigin 01

0	0.02	0.1		0.01		0	
10%	20%	50%		70%		90%)
0.1	0.08	0.07		0.07		0.08	
Bankfu	ll Width:	1.4					
Wetted	l Width:	0.8					
Transect:	J	Densiom	eter:	6			
Depths		Gradier	nt:	1%			
left bf	left wet	thalwe	g	right we	t	right l	bf
0	0.02	0.05	0	0		0	
10%	20%	50%		70%		90%)
0.04	0.05	0.05		0.06		0.03	
Bankfu	ll Width:	1.8					
Wetted	l Width:	1.2					
Transect:	K	Densiom	eter:	1			
Depths		Gradier	nt:	NA			
left bf	left wet	thalwe	g	right we	t	right	bf
0	0	0.13	Ð	0	-	0	
10%	20%	50%		70%		90%	,
0.04	0.11	0.13		0.1		0.08	
Bankfu	ll Width:	16		0.11		0.00	
Wetted	Width:	0.9					
		0.7					
		Pebble Co	ounts				
ID:	Х						
10%	25%	50%		75%		90%)
X	X	X		Х		Х	
		Large Wood	y Debr	is			
Transect ID	Length	Width		Wood Type		Location	
А	0.0	5	0.2	RN			1.6
Н	1.8	3	0.45	Ν			7
Н	~ _	2	0.37	Ν			15.5
Н	1.3	3	0.45	Ν			15.5
Ι	1.4	1	0.4	Ν			10
Ι		2	0.3	N			16
		Pools	5				
Transect ID	Full / Partial	Туре		length		width	
В	Partial	Scour			1.1		0.9
Pool Depths	_						
head crest	tail crest	max					
0.04	0.1	l	0.27				
Transect ID	Full / Partial	Туре		length		width	
F	Full	Scour			1.7		1.2

Pool Depths	_				
head crest	tail crest	max			
*in culvert	0.08	3	0.25		
Transect ID	Full / Partial	Туре	length	width	
Е	Х	Scour	-	11.8	0.9
Pool Depths					
head crest	tail crest	max			
0.04	*in culvert		0.18		
0.04	*in culvert		0.18		
0.04	*in culvert Surfa	ce Fines on Po	0.18 ol Tail Crest		
0.04 Transect ID	*in culvert Surfa Full / Partial	ce Fines on Po Plunge / Scou	0.18 ol Tail Crest		
0.04 Transect ID X	*in culvert Surfa Full / Partial X	ce Fines on Po Plunge / Scou X	0.18 ol Tail Crest r		
0.04 Transect ID X Number of inter	*in culvert Surfa Full / Partial X rsection fine	ce Fines on Po Plunge / Scou X	0.18 ol Tail Crest		
0.04 Transect ID X Number of inter 25%	*in culvert Surfa Full / Partial X rsection fine 50%	ce Fines on Po Plunge / Scou X	0.18 ol Tail Crest r 75%		

Comments: We did not do pebble counts or measure percent surface fines on pool tails for this survey. End of Survey Photos: Upstream 100-0922, Downstream 100-0921, Right Bank 100-919, Left Bank 100-0920.

Property:	Toandos	Date:	7/23/2020	
Stream:	Stream 1			
		Major Transect	S	
Transect:	А	Densiometer:	6	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0.2	0.2	0.15	0	0
10%	20%	50%	70%	90%
0.18	0.19	0.15	0.15	0.07
Bankf	ull Width:	2.5		
Wette	ed Width:	1.3		
Transect:	В	Densiometer:	8	
Depths		Gradient:	4%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.12	0	0
10%	20%	50%	70%	90%
0.07	0.11	0.12	0.11	0.1
Bankf	ull Width:	2.7		
Wette	ed Width:	1.4		
Transect:	С	Densiometer:	7	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.06	0	0

10%	20%	50% 70%		90%
0.05	0.06	0.06	0.07	0.05
Bankful	l Width:	2.3		
Wetted	Width:	1.2		
Transect:	D	Densiometer:	6	
Depths		Gradient:	3%	
left bf	left wet	thalweg	right wet	right bf
0.08	0.08	0.12	0	0
10%	20%	50%	70%	90%
0.12	0.12	0.11	0.1	0.05
Bankful	l Width:	2.1		
Wetted	Width:	1.2		
Turnet	Б	Densistant	17	
Transect:	E	Densiometer:	1/	
Deptns	1.6	Gradient:	3%0	
left bi	left wet	thalweg	right wet	right bi
0	0	0.1	0	0
10%	20%	50%	/0%	90%
0.01	0.03	0.1	0.1	0.05
Bankful	I Width:	2.5		
Wetted	Width:	1.6		
Transect:	F	Densiometer:	7	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.07	0	0
10%	20%	50%	70%	90%
0.05	0.04	0.07	0.06	0.04
Bankful	l Width:	2.4		
Wetted	Width:	1.8		
Transect:	G	Densiometer:	9	
Depths		Gradient:	3%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.1	0	0
10%	20%	50%	70%	90%
0.04	0.08	0.1	0.06	0.05
Bankful	l Width:	2		
Wetted	Width:	1.3		
Transect	Ц	Densiometer	5	
Denths	11	Gradient.	2%	
left hf	left wet	thalweg	right wet	right hf
0.07	0.07	0 1		n n
10%	20%	50%	70%	0 00%
0.1	0.08	0.07	0.05	0.04
0.1	0.00	0.07	0.05	0.07

Bankful	l Width:	1.8		
welled	width:	1.5		
Transect:	Ι	Densiometer:	26	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.08	0	0
10%	20%	50%	70%	90%
0.09	0.08	0.08	0.08	0.06
Bankful	l Width:	4		
Wetted	Width:	1.3		
Transect:	I	Densiometer:	7	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0.01	0.01	0.07	0	0
10%	20%	50%	70%	90%
0.06	0.06	0.07	0.08	0.07
Bankful	l Width:	2.2	0100	0107
Wetted	Width:	1.9		
		-		
Transect:	Κ	Densiometer:	4	
Depths		Gradient:	NA	
left bf	left wet	thalweg	right wet	right bf
0	0	0.07	0	0
10%	20%	50%	70%	90%
0.06	0.08	0.07	0.03	0.02
Bankful	l Width:	1.8		
Wetted	Width:	1.5		
		Pebble Counts		
ID:	A2			
10%	25%	50%	75%	90%
5	29	25	3	6
19	20	25	38	19
31	31	25	27	4
ID:	B 1			
10%	25%	50%	75%	90%
1070	2570	5070 7	10	sond
1 2 Q	23	/ 28	17 47	5anu 10
11	13	20 45	τ2 47	sand
11	13	45	ד /	Sand
ID:	B2			
10%	25%	50%	75%	90%
7	39	64	5	14
7	45	29	27	7

5	27	7	35	10
ID:	C1			
10%	25%	50%	75%	90%
44	64	29	60	4
62	9	60	25	12
10	17	43	19	14
ID:	C2			
10%	25%	50%	75%	90%
sand	18	73	35	38
11	11	7	18	42
10	10	76	47	12
ID:	D1			
10%	25%	50%	75%	90%
40	75	20	3	6
41	9	8	9	6
44	25	5	22	6
ID:	D2			
10%	25%	50%	75%	90%
32	4	5	16	65
17	20	15	52	32
16	6	18	22	14
ID:	E1			
10%	25%	50%	75%	90%
16	6	18	15	sand
16	43	6	16	sand
18	28	4	8	10
ID:	E2			
10%	25%	50%	75%	90%
sand	sand	sand	8	4
sand	sand	sand	15	11
sand	sand	sand	16	8
ID:	F1			
10%	25%	50%	75%	90%
6	6	19	54	51
8	6	46	30	22
12	21	18	4	15
ID:	F2			
10%	25%	50%	75%	90%
86	35	36	10	12

70	15	13	5	4
15	33	1	10	3
ID:	G1			
10%	25%	50%	75%	90%
7	20	13	23	47
5	14	13	19	14
14	77	10	7	20
ID:	G2			
10%	25%	50%	75%	90%
4	8	17	45	7
4	13	5	38	9
6	6	32	18	silt
ID:	H1			
10%	25%	50%	75%	90%
56	15	19	10	25
86	18	20	8	5
16	34	18	9	21
ID:	H2			
10%	25%	50%	75%	90%
10	10	20	20	46
6	12	20	27	58
8	17	28	27	18
ID:	I1			
10%	25%	50%	75%	90%
15	5	67	32	9
99	44	45	21	9
16	6	41	24	10
ID:	I2			
10%	25%	50%	75%	90%
6	4	19	24	15
46	7	24	24	29
5	6	11	10	34
ID:	J1			
10%	25%	50%	75%	90%
62	63	26	21	37
39	22	10	15	sand
5	23	4	9	31
ID:	J2			
10%	25%	50%	75%	90%

9	27	23		100		35	
21	6	6		9		61	
7	11	50		6		10	
ID:	K1						
10%	25%	50%		75%		90%	
15	4	17		15		12	
20	17	22		19		9	
13	69	10		3		4	
]	Large Woody	Debris				
Transect ID	Length	Width	W	/ood Type]	Location	
В	1.3		0.25 N	-			5
С	3		0.4 N	[9
D	2.5		0.25 N	[2.2
Е	2.5		0.7 N	[1.5
Е	2.2		0.25 N	[7
Е	3		0.4 N	[10
G	1.4		0.25 N	[11
J	2.3		0.35 N	_			13.7
		Pools					
Transect ID	Full / Partial	Туре	le	ength	,	width	
С	Partial	Scour			1.6		1.1
Pool Depths							
head crest	tail crest	max					
0.04	0.05		0.23				
Transect ID	Full / Partial	Type	le	ength	,	width	
D	Full	Scour		e	1.8		1.8
Pool Depths							
head crest	tail crest	max					
0.1	0.05		0.3				
Transect ID	Full / Partial	Type	le	ength	,	width	
E	Full	Scour			2		2.5
Pool Depths		2000			-		2.00
head crest	tail crest	max					
0.13	0.04	max	04				
0.15	0.04		0.4				
Transect ID	Full / Partial	Type	le	ngth	,	width	
E	Partial	Plunge	10	0	0.7		0.8
- Pool Denths					5.1		0.0
head crest	tail crest	max					
Λ Λ2	ΔΠ 0103t Λ Λ2	mun	0.2				
0.05	0.02		0.2				
		-	-				

Transect ID Full / Partial Type length width

G	Full	Plunge			1.8	2	
Pool Depths							
head crest	tail crest	max					
0.03	5 0.02	8	0.27				
Transect ID	Full / Partial	Туре		length	width		
Н	Full	Scour		C	2.5	2.2	
Pool Depths							
head crest	tail crest	max					
0.04	4 0.0	5	3.27				
Transect ID	Full / Partial	Type		length	width		
J	Х	X		C	1.9	2.9	
Pool Depths						,	
head crest	tail crest	max					
0.0	5 0.0)	0.3				
0.0.	0.0	-	0.5				
	Surf	ce Fines on Po	ol Ta	il Crest			
Transect ID	Full / Partial	Plunge / Scour		•			
C	Partial	Scour					
- Number of inte	ersection fine						
25%	6 50%	/ 0	75%				
1	1	3	9				
	-	-	-				
Transect ID	Full / Partial	Plunge / Scour					
D	Full	Scour					
Number of inte	ersection fine						
25%	50%	/ 0	75%				
1	0 507 1	5	27				
1	1	<i>)</i>	21				
Transect ID	Full / Partial	Plunge / Scour					
F	Full	Scour					
L Number of inte	rsection fine	Jeour					
750	۲۵۵۵ ۲۵۱۱ IIIC	<u>/</u>	750/~				
237	ט <i>5</i> 07 ר	1	יגי ר				
۷.	<u> </u>	ŧ	/				
Transact ID	Full / Dartial	Plunge / Soour					
	Tuir / Faltial	Dlunge					
L Number of inte	raulal	riunge					
inumber of inte		/	750/				
25%	o 50%	0	/3%				
		3	15				
T D							
Transect ID	Full / Partial	Plunge / Scour					
G	Full	Plunge					
Number of inte	ersection fine						
25%	6 50%	, 0	75%				
10	0 22	2	9				

Transect ID	Full / Partial	Plunge / Scour					
Н	Full	Scour					
Number of intersection fine							
25%	50%	75%					
6	11	11					
Transect ID	Full / Partial	Plunge / Scour					
J	Full	Plunge					
Number of inter	section fine						
25%	50%	75%					
2	3	4					

Start of survey photos; upstream 979, left bank 980, downstream 981, right bank 982. End of survey photos; downstream 986, right bank 987, upstream 988, left bank 989.

Property	Toandos	Date:	7/23/2020	
Stream:	Stream 2			
Streum		Maior Transect	s	
Transect:	А	Densiometer:	5	
Depths		Gradient:	8%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.01	0.01	0.01
10%	20%	50%	70%	90%
0.01	0.02	0.01	0.01	0.01
Bankf	ull Width:	2.4		
Wette	ed Width:	1.5		
Transect:	В	Densiometer:	3	
Depths		Gradient:	8%	
left bf	left wet	thalweg	right wet	right bf
0.04	0.04	0.25	0	0
10%	20%	50%	70%	90%
0.16	0.16	0.25	0.18	0.5
Bankf	ull Width:	2		
Wette	ed Width:	1.2		
Transect:	С	Densiometer:	2	
Depths		Gradient:	6%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.2	0	0
10%	20%	50%	70%	90%
0.2	0.2	0.2 0.2		0.2
Bankf	ull Width:	0.8		
Wette	ed Width:	0.3		

Transect:	D	Densiometer: 4		
Depths		Gradient:	8%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.02	0	0
10%	20%	50%	70%	90%
0.02	0.02	0.02	0.02	0.02
Bankful	l Width:	1.7		
Wetted	Width:	0.3		
Transect:	Е	Densiometer:	4	
Depths		Gradient:	6%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.01	0	0
10%	20%	50%	70%	90%
0.01	0.01	0.01	0.01	0.01
Bankful	l Width:	0.8		
Wetted	Width:	0.25		
Transect:	F	Densiometer:	7	
Depths		Gradient:	NA	
left bf	left wet	thalweg	right wet	right bf
0	0	0.03	0	0
10%	20%	50%	70%	90%
0.02	0.03	0.03	0.03	0.02
Bankful	l Width:	1.2		
Wetted	Width:	0.7		
		Pebble Counts		
ID:	A2			
10%	25%	50%	75%	90%
wood	wood	wood	12	6
wood	wood	wood	22	11
wood	wood	wood	18	15
T	DI			
ID:	BI	7 00/	- - 0 /	0.00/
10%	25%	50%	/5%	90%
sılt	sılt	wood	9	9
sılt	sılt	wood	16	7
sılt	wood	wood	8	5
ID.	DJ			
107	D2 250/	500/	750/	000/
1070	2370 A	5070	1370	90% 7
4	4 1	3 0	3 0	/ 0
9	4	ð 2	0	ð 10
4	10	0	11	10

ID:	C1			
10%	25%	50%	75%	90%
8	sand	5	sand	4
sand	sand	15	sand	6
sand	sand	8	sand	5
ID:	C2			
10%	25%	50%	75%	90%
silt	silt	3	3	silt
silt	silt	4	4	7
sand	silt	3	6	8
ID:	D1			
10%	25%	50%	75%	90%
silt	4	sand	sand	4
silt	10	sand	11	10
48	10	sand	9	sand
ID:	D2			
10%	25%	50%	75%	90%
5	9	4	10	silt
sand	2	3	silt	16
4	4	2	10	silt
ID:	E1			
10%	25%	50%	75%	90%
sand	sand	sand	sand	8
sand	sand	sand	5	9
sand	sand	sand	7	4
ID	52			
ID:	E2	500/	7.50/	0.00/
10%	25%	50%	75%	90%
13	5	2	/	sand
11 5	4	sand	sand	sand
5	14	3	sand	3
ID.	F 1			
1D. 100/	Г I 250/	500/	750/	000/
2	2370 14	21	/ J 70 1 1	9070 1
3 27	14	51 24	11	4 1 <i>1</i>
57 17	3 11	∠ 4 5	14	14 7
1/	11	5	55	/

Large Woody Debris						
Transect ID	Length	Width	Wood Type	Location		
А		6	0.5 N		3	
А		1.5	0.5 N		3	
А		1.3	0.3 N		3	

А	1.	2	0.3	Ν		3
А	0.	8	0.8	RN		5.5
А	1.	4	0.45	Ν		9
А		2	0.3	Ν		9.5
А	2.	5	0.5	Ν		11
А		1	0.3	Ν		12
В		4	0.3	Ν		1
В	1.	3	0.35	Ν		3
В		1	0.4	Ν		3.5
В		5	0.5	Ν		5
В	NA	NA		Ν		1
В	NA	NA		Ν		12
В	NA	NA		Ν		12
С	NA	NA		Ν		4
С		2	0.5	Ν		8
С	NA	NA		Ν		9
С	NA	NA		Ν		10
С	NA	NA		Ν		13
С	NA	NA		Ν		13
E	1.	2	1.2	Ν		14
			Pools			
Transect ID	Full / Partial	Type		length	width	
NA	NA	NA		NA	NA	
Pool Depths						
head crest	tail crest	max				
NA	NA	NA				
	Surf	ace Fines	s on Pool Ta	il Crest		
Transect ID	Full / Partial	Plunge	/ Scour			
NA	NA	NA				
Number of int	ersection fine					
25%	% 50 ^o	<i>/</i> 0	75%			
NA	NA	NA				

Comments: Start of survey photos; downstream 1001, upstream 998, right bank 1000, left bank 999. End of survey photos; right bank 1005, left bank 1004, downstream 1003, upstream 1002

Property:	Toandos	Date:	8/4/2020	
Stream:	Stream 3			
		Major Transects		
Transect:	А	Densiometer:	6	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf

0	0	0.03	0	0
10%	20%	50%	70%	90%
0.02	0.02	0.03	0.02	0.01
Bankful	l Width:	2.4		
Wetted	Width:	1.5		
Transect:	В	Densiometer:	2	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.11	0	0
10%	20%	50%	70%	90%
0.04	0.09	0.11	0.11	0.05
Bankful	l Width:	1.9	-	
Wetted	Width:	1.2		
Transect:	С	Densiometer:	5	
Depths		Gradient:	3%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.1	0	0
10%	20%	50%	70%	90%
0.07	0.07	0.1	0.09	0.02
Bankful	l Width:	1.8		
Wetted	Width:	1.4		
Transect:	D	Densiometer:	3	
Transect: Depths	D	Densiometer: Gradient:	3 1%	
Transect: Depths left bf	D left wet	Densiometer: Gradient: thalweg	3 1% right wet	right bf
Transect: Depths left bf 0	D left wet 0	Densiometer: Gradient: thalweg 0.08	3 1% right wet 0	right bf 0
Transect: Depths left bf 0 10%	D left wet 0 20%	Densiometer: Gradient: thalweg 0.08 50%	3 1% right wet 0 70%	right bf 0 90%
Transect: Depths left bf 0 10% 0.1	D left wet 0 20% 0.12	Densiometer: Gradient: thalweg 0.08 50% 0.08	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05
Transect: Depths left bf 0 10% 0.1 Bankfull	D left wet 0 20% 0.12 l Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted	D left wet 0 20% 0.12 l Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted	D left wet 0 20% 0.12 l Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect:	D left wet 0 20% 0.12 l Width: Width: E	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer:	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths	D left wet 0 20% 0.12 l Width: Width: E	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient:	3 1% right wet 0 70% 0.13 6 2%	right bf 0 90% 0.05
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf	D left wet 0 20% 0.12 l Width: Width: E left wet	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0	D left wet 0 20% 0.12 l Width: Width: E left wet 0	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf 0
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10%	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20%	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50%	$ \begin{array}{r} 3 \\ 1\% \\ right wet \\ 0 \\ 70\% \\ 0.13 \end{array} $ $ \begin{array}{r} 6 \\ 2\% \\ right wet \\ 0 \\ 70\% \end{array} $	right bf 0 90% 0.05 right bf 0 90%
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8 Densiometer:	3 1% right wet 0 70% 0.13	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted Transect: Depths	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8 Densiometer: Gradient:	3 1% right wet 0 70% 0.13 6 2% right wet 0 70% 0.05 2 4%	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted Transect: Depths	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width: Width:	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8 Densiometer: Gradient: thalweg	3 1% right wet 0 70% 0.13 6 2% right wet 0 70% 0.05 2 4% right wet	right bf 0 90% 0.05 right bf 0 90% 0.02
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted Transect: Depths left bf 0	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width: F left wet 0	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8 Densiometer: Gradient: thalweg 0.05	$ \begin{array}{r} 3 \\ 1\% \\ right wet \\ 0 \\ 70\% \\ 0.13 \end{array} $ $ \begin{array}{r} 6 \\ 2\% \\ right wet \\ 0 \\ 70\% \\ 0.05 \end{array} $ $ \begin{array}{r} 2 \\ 4\% \\ right wet \\ 0 \end{array} $	right bf 0 90% 0.05 right bf 0 90% 0.02 right bf 0
Transect: Depths left bf 0 10% 0.1 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted Transect: Depths left bf 0 10% 0.02 Bankfull Wetted	D left wet 0 20% 0.12 l Width: Width: E left wet 0 20% 0.01 l Width: Width: Width: F left wet 0 20%	Densiometer: Gradient: thalweg 0.08 50% 0.08 2.6 2.1 Densiometer: Gradient: thalweg 0.05 50% 0.05 2.5 0.8 Densiometer: Gradient: thalweg 0.05 5.5 0.8	$ \begin{array}{c} 3 \\ 1\% \\ right wet \\ 0 \\ 70\% \\ 0.13 \end{array} $ $ \begin{array}{c} 6 \\ 2\% \\ right wet \\ 0 \\ 70\% \\ 0.05 \end{array} $ $ \begin{array}{c} 2 \\ 4\% \\ right wet \\ 0 \\ 70\% \end{array} $	right bf 0 90% 0.05 right bf 0 90% 0.02 right bf 0 90%

0.04	0.05	0.05	0.05	0.03
Bankful	l Width:	2.1		
Wetted	Width:	1.1		
Turnet	C	Denter	11	
I ransect:	G	Densiometer:	11	
Depths	1.6.	Gradient:	2%0	
left bi	left wet	thalweg	right wet	right bi
0	0	0.06	0	0
10%	20%	50%	/0%	90%
0.02	0.04	0.06	0.05	0.02
Bankful	I Width:	2.4		
Wetted	Width:	1.3		
Transect:	Н	Densiometer:	5	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0.02	0.02	0.08	0	0
10%	20%	50%	70%	90%
0.04	0.08	0.08	0.04	0.02
Bankful	l Width:	1.6		
Wetted	Width:	1.2		
Transect:	Ι	Densiometer:	4	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.03	0	0
10%	20%	50%	70%	90%
0.05	0.03	0.02	0.03	0.02
Bankful	l Width:	1.6		
Wetted	Width:	1		
T (т		0	
I ransect:	J	Densiometer:	0	
Depths	1.0	Gradient:	1%	. 1 . 1 .
left bi	left wet	thalweg	right wet	right bi
0	0	0.06	0	0
10%	20%	50%	70%	90%
0.06	0.08	0.06	0.05	0.02
Bankful	I Width:	1.4		
Wetted	Width:	0.8		
Transect:	Κ	Densiometer:	2	
Depths		Gradient:	6%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.06	0	0
10%	20%	50%	70%	90%
0.02	0.04	0.06	0.04	0.02
Bankful	l Width:	1.3		

Wette	ed Width:	0.7		
		Large Woody	v Debris	
Transect ID	Length	Width	Wood Type	Location
А	2	.5	0.2 N	13
С	1	.5	0.3 N	7
E	1	.6	0.25 N	9
H	1	.2	0.5 RW	14.3
J	1	3	1 RW	13
5	1		1 1000	13
		Pools		
Transect ID	Full / Partial	Type	length	width
NA	NA	NA	NA	NA
Pool Depths				
head crest	tail crest	max		
NA	NA	NA		
	Surf	face Fines on P	ool Tail Crest	
Transect ID	Full / Partial	Plunge / Scol	1r	
NA	NA	NA		
Number of int	tersection fine	1 12 1		
25°	% 50 [°]	%	75%	
NA	NA	NA		
		Pebble Co	ounts	
ID:	A2			
10%	25%	50%	75%	90%
16	21	49	21	sand
8	20	45	6	56
51	20 43	19	15	34
51	43	19	15	54
ID:	B 1			
10%	25%	50%	75%	90%
24	23	31	22	25
24	23	36	21	6
25	23	20	68	20
١D٠	R2			
10%	25%	50%	75%	90%
1070 07	2370	5070 26	5	21
21	21 10	20 10	3	51 14
30	18	10	9	14
9	13	11	19	12
ID:	C1			
10%	25%	50%	75%	90%
sand	28	27	9	6
9	48	8	6	5

7	25	10	5	8
ID:	C2			
10%	25%	50%	75%	90%
35	sand	sand	11	8
65	sand	sand	4	10
23	58	3	4	5
ID:	D1			
10%	25%	50%	75%	90%
12	17	17	5	13
11	13	18	17	17
24	41	14	25	10
ID:	D2			
10%	25%	50%	75%	90%
11	12	33	34	5
28	46	9	10	13
11	11	8	4	20
ID:	E1			
10%	25%	50%	75%	90%
16	44	33	11	10
18	19	11	67	10
17	14	25	23	14
ID:	E2			
10%	25%	50%	75%	90%
15	14	16	55	7
16	16	17	4	31
sand	31	67	4	5
ID:	F1			
10%	25%	50%	75%	90%
12	19	37	9	50
25	28	27	7	9
11	15	96	23	10
ID:	F2			
10%	25%	50%	75%	90%
15	15	40	39	82
10	20	29	14	42
29	20	46	30	18
ID:	G1			
10%	25%	50%	75%	90%
55	41	34	6	13

12	5	26	71	15
5	35	46	80	11
	~			
ID:	G2	500/	750/	0.00/
10%	25%	50%	/5%	90%
26	14	14	6	5
)	11	22	11	18
10	20	13	13	9
ID:	H1			
10%	25%	50%	75%	90%
15	62	25	54	66
11	70	5	12	30
12	33	23	23	22
ID:	H2			
10%	25%	50%	75%	90%
18	50	71	14	30
38	33	6	8	24
18	44	32	14	5
ID:	I1			
10%	25%	50%	75%	90%
12	43	60	41	26
41	83	72	39	33
29	15	15	65	14
١D٠	12			
1D. 10%	25%	50%	75%	90%
60	2970	73	7370 A	26
12	40	73	4	
12	29	23	6	32
ID:	J1	500/	750/	0.00/
10%	25%	50%	75%	90%
13	16	18	14	21
29	29	28	12	13
9	86	12	6	13
ID:	J2			
10%	25%	50%	75%	90%
42	11	38	11	45
36	8	39	20	12
11	83	27	11	27
ID:	K1			
10%	25%	50%	75%	90%

27	36	28	76	41
29	24	50	46	54
13	27	41	37	37

Start of survey photos: downstream 1016, right bank 1015, left bank 1014, upstream 1013. End of survey photos: upstream 1023, downstream 1021, right bank 1020, left bank 1022.

Property:	Manchester	Date:	7/22/2020	
Stream:	Beaver Creek			
		Major Transects	5	
Transect:	А	Densiometer:	26	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.14	0	0
10%	20%	50%	70%	90%
0.08	0.08	0.11	0.14	0.04
Bankf	ull Width:	3.6		
Wette	ed Width:	3.1		
Transect:	В	Densiometer:	10	
Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0.09	0.09	0.05	0	0
10%	20%	50%	70%	90%
0.04	0.04	0.03	0.05	0.03
Bankf	ull Width:	4.2		
Wette	ed Width:	3.8		
Transect:	С	Densiometer:	6	
Depths	_	Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.07	0	0
10%	20%	50%	70%	90%
0.04	0.01	0.03	0.07	0.07
Bankf	ull Width:	3.7		
Wette	ed Width:	1.8		
_	_		_	
Transect:	D	Densiometer:	2	
Depths	_	Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf
0.09	0.09	0.05	0	0
10%	20%	50%	70%	90%
0.1	0.06	0.05	0.05	0.04
Bankf	ull Width:	2.4		

Wetted Width:		2.2			
Transect:	Е	Densiometer:	7		
Depths		Gradient:	1%		
left bf	left wet	thalweg	right wet	right bf	
0.01	0.01	0.15	0	0	
10%	20%	50%	70%	90%	
0.08	0.12	0.15	0.07	0.08	
Bankful	Width:	2.4			
Wetted	Width:	2.4			
Transect:	F	Densiometer:	4		
Depths		Gradient:	2%		
left bf	left wet	thalweg	right wet	right bf	
0	0	0.07	0	0	
10%	20%	50%	70%	90%	
0.08	0.05	0.07	0.05	0.1	
Bankfull	Width:	2.5		•••	
Wetted	Width:	2			
		-			
Transect:	G	Densiometer:	7		
Depths		Gradient:	1%		
left bf	left wet	thalweg	right wet	right bf	
0	0	0.2	0.26	0.2	
10%	20%	50%	70%	90%	
0.05	0.13	0.2	0.22	0.22	
Bankful	l Width:	1.8			
Wetted	Width:	1.3			
Transect:	Н	Densiometer:	9		
Depths		Gradient:	1%		
left bf	left wet	thalweg	right wet	right bf	
0	0	0.14	0.15	0.15	
10%	20%	50%	70%	90%	
0.03	0.05	0.12	0.14	0.14	
Bankful	Width:	2.6			
Wetted	Width:	1.3			
Transect:	I	Densiometer:	5		
Depths	÷	Gradient	2%		
left bf	left wet	thalweg	right wet	right bf	
0	0	0.07	0	0	
10%	20%	50%	70%	90%	
0.05	0.05	0.07	0.06	0.04	
Bankfull	Width:	19	0.00	0.01	
Wetted	Width:	1.2			

Transect:	J Densiometer:		6	
Depths		Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.08	0	0
10%	20%	50%	70%	90%
0.03	0.04	0.08	0.08	0.06
Bankful	l Width:	2.6		
Wetted	Width:	1.8		
Transect:	К	Densiometer:	4	
Depths		Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.1	0	0
10%	20%	50%	70%	90%
0.02	0.05	0.08	0.1	0.08
Bankful	l Width:	2.6		
Wetted	Width	13		

Large Woody Debris						
Transect ID	Length	Width	Wood Type	Location		
С		2.7	0.26 N	1		
С		2	0.3 N	3		
D		2.7	0.5 N	11		
E		1.5	0.5 N	9		
E		4.5	0.45 N	11.5		
G		2.1	0.3 N	9		
G		2.4	0.3 N	9.5		
Ι		4	0.4 N	8		
Ι		1.7	1.7 RN	11		
Ι		2.3	0.45 N	13		
Κ		1.3	2 RN	9		
Κ		3	0.3 N	7		

Pools					
Transect ID	Full / Partial	Туре	length	width	
D	Full	Scour		10.5	1.7
Pool Depths					
head crest	tail crest	max			
0.08	0.05		0.3		
Transect ID	Full / Partial	Туре	length	width	
E	Full	Scour		5.5	3
Pool Depths					
head crest	tail crest	max			
0.07	0.03		0.5		
Transect ID	Full / Partial	Туре	length	width	
F	Full	Scour		5	1.5
Pool Depths					

head crest	tail crest	max			
0.08	0.08		0.4		
Transect ID	Full / Partial	Туре	length	width	
G	Full	Scour		7	2.5
Pool Depths					
head crest	tail crest	max			
0.1	0.1		0.5		
Transect ID	Full / Partial	Туре	length	width	
Н	Full	Scour		8	2
Pool Depths					
head crest	tail crest	max			
0.03	0.1		0.45		
Transect ID	Full / Partial	Туре	length	width	
Κ	Full	Scour		5	3.1
Pool Depths					
head crest	tail crest	max			
0.08	0.05		0.55		

Surface Fines on Pool Tail Crest

Transect ID	Full / Partial	Plunge / Sco	ur
D	Full	Scour	
Number of inter	section fine		
25%	50%	6	75%
3		4	7
Transect ID	Full / Partial	Plunge / Sco	ur
E	Full	Scour	
Number of inter	section fine		
25%	50%	6	75%
3		9	19
Transect ID	Full / Partial	Plunge / Sco	ur
F	Full	Scour	
Number of inter	section fine		
25%	50%	6	75%
2		4	3
Transect ID	Full / Partial	Plunge / Sco	ur
G	Full	Scour	
Number of inter	section fine		
25%	50%	6	75%
3		4	7
Transect ID	Full / Partial	Plunge / Sco	ur
Н	Full	Scour	
Number of inter	section fine		
25%	50%	ó	75%
4		5	2
Transect ID	Full / Partial	Plunge / Sco	ur
Κ	Full	Scour	
Number of inter	section fine		

25%	50%	75%		
8	6	4		
]	Pebble Counts		
ID:	A2			
10%	25%	50%	75%	90%
14	14	40	26	13
9	16	39	27	17
14	12	36	50	17
ID:	B1			
10%	25%	50%	75%	90%
18	12	11	18	35
16	18	12	25	29
41	35	38	18	19
ID:	B2			
10%	25%	50%	75%	90%
silt	silt	17	25	10
silt	silt	11	17	12
silt	silt	22	10	16
ID:	C1			
10%	25%	50%	75%	90%
6	51	17	24	21
48	33	19	46	3
21	30	55	33	70
ID:	C2			
10%	25%	50%	75%	90%
silt	36	41	15	29
silt	24	24	16	15
silt	silt	55	9	22
ID:	D1			
10%	25%	50%	75%	90%
20	26	23	25	56
15	13	32	13	35
28	56	12	12	28
ID:	D2			
10%	25%	50%	75%	90%
31	7	26	46	44
6	17	23	42	12
36	18	47	38	26
ID:	E1			

10%	25%	50%	75%	90%
42	31	57	12	31
37	56	42	17	20
9	27	15	12	51
ID:	E2			
10%	25%	50%	75%	90%
18	26	26	42	12
29	39	31	15	19
37	28	17	11	15
ID:	F1			
10%	25%	50%	75%	90%
5	41	13	12	92
5	5	25	53	7
7	8	10	7	95
ID:	F2			
10%	25%	50%	75%	90%
10	10	32	sand	4
13	14	40	sand	20
14	4	48	sand	12
ID:	G1			
10%	25%	50%	75%	90%
21	15	27	14	36
18	10	9	22	30
5	44	16	21	26
ID:	G2			
10%	25%	50%	75%	90%
31	5	35	47	55
27	27	18	14	18
19	36	45	57	13
ID:	H1			
10%	25%	50%	75%	90%
13	35	20	19	48
24	21	20	29	27
10	22	17	24	53
ID:	H2			
10%	25%	50%	75%	90%
25	35	43	42	34
34	44	62	47	silt
20	35	27	38	silt

ID:	I1			
10%	25%	50%	75%	90%
25	45	37	28	13
46	79	54	30	22
41	50	45	18	14
ID:	I2			
10%	25%	50%	75%	90%
18	26	52	42	50
26	24	23	9	51
12	25	41	14	30
ID:	J1			
10%	25%	50%	75%	90%
25	42	52	12	43
58	45	21	24	7
24	22	13	14	46
ID:	J2			
10%	25%	50%	75%	90%
sand	12	36	37	42
sand	13	31	22	62
sand	8	41	44	50
ID:	K1			
10%	25%	50%	75%	90%
19	44	30	11	27
22	13	28	33	35
47	28	50	36	57

Comments: End of survey photos: 938-941

D				
Property:	Manchester	Date:	7/22/2020	
Stream:	Beaver Creek	*second survey		
		Major Transects		
Transect:	А	Densiometer:	4	
 Depths	_	Gradient:	1%	
 left bf	left wet	thalweg	right wet	right bf
0	0	0.07	0	0
10%	20%	50%	70%	90%
0.02	0.06	0.08	0.07	0.03
Bankfu	ll Width:	3		
Wetted Width:		2.1		
Transect:	В	Densiometer:	5	
 Depths		Gradient:	2%	
left bf	left wet	thalweg	right wet	right bf

0.07	0.07	0.21	0	0
10%	20%	50%	70%	90%
0.07	0.12	0.21	0.19	0.13
Bankful	l Width:	3		
Wetted	Width:	1.6		
Transect:	С	Densiometer:	6	
Depths		Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.15	0	0
10%	20%	50%	70%	90%
0.11	0.16	0.15	0.13	0.05
Bankful	l Width:	3.6		
Wetted	Width:	1.9		
Transect:	D	Densiometer:	5	
Depths		Gradient:	3%	
left bf	left wet	thalweg	right wet	right bf
0.05	0.05	0.15	0.15	0.15
10%	20%	50%	70%	90%
0.17	0.15	0.15 0.2		0.17
Bankful	l Width:	3		
Wetted	Width:	3		
Transect:	Е	Densiometer:	3	
Depths		Gradient:	0%	
left bf	left wet	thalweg	right wet	right bf
0	0	0.25	0.08	0.08
10%	20%	50%	70%	90%
0.1	0.13	0.32	0.3	0.25
Bankful	l Width:	3		
Wetted	Width:	2.5		
Transect:	F	Densiometer:	1	
Depths		Gradient:	1%	
left bf	left wet	thalweg	right wet	right bf
0.06	0.06	0.18	0	0
10%	20%	50%	70%	90%
0.15	0.19	0.18	0.12	0.05
Bankful	l Width:	3.5		
Wetted	Width:	1.3		
T	~	D		
I ransect:	G	Densiometer:	4	
Depths	1.0	Gradient:	1%	
lett bt	lett wet	thalweg	right wet	right bf
0	0	0.08	0.02	0.02
10%	20%	50%	70%	90%

0.04	0.08	0.08		0.09	0.08	
Bankfull Width:		3.2	3.2			
Wette	d Width:	1.7				
Transect:	Н	Densiom	eter:	9		
Depths		Gradie	nt:	2%		
left bf	left wet	thalwe	eg	right wet	right bf	
0.02	0.02	0.06		0	0	
10%	20%	50%	1	70%	90%	
0.05	0.08	0.06		0.05	0.03	
Bankfi	ull Width:	2.6				
Wette	d Width:	1.5				
Transect:	Ι	Densiom	eter:	6		
Depths		Gradie	nt:	1%		
left bf	left wet	thalwe	eg	right wet	right bf	
0	0	0.12		0	0	
10%	20%	50%	1	70%	90%	
0.15	0.1	0.1		0.12	0.1	
Bankfi	ull Width:	3.4				
Wette	d Width:	2.7				
Transect:	J	Densiom	eter:	3		
Depths		Gradie	nt:	1%		
left bf	left wet	thalwe	eg	right wet	right bf	
0	0	0.1		0	0	
10%	20%	50%	1	70%	90%	
0.06	0.1	0.12		0.08	0.04	
Bankfi	ull Width:	3.2				
Wette	d Width:	2.8				
Transect:	K	Densiom	eter:	9		
Depths		Gradie	nt:	NA		
left bf	left wet	thalwe	eg	right wet	right bf	
0	0	0.07		0.03	0.03	
10%	20%	50%	1	70%	90%	
0.04	0.02	0.04		0.03	0.02	
Bankfi	ull Width:	3.5				
Wette	d Width:	3.1				
		Large Wood	ly Debris			
Transect ID	Length	Width	W	lood Type	Location	
В		2	0.55 N			16
С		2.6	0.3 N			16
С		2	0.35 N			16
С		2.4	0.45 N			16
С		2.5	0.3 N			16

	Surfa	ce Fines or	Pool Ta	il Crest		
0.08	6.09)	0.3			
head crest	tail crest	max	<u> </u>			
Pool Depths						
H	Full	Scour			5	2
Transect ID	Full / Partial	Туре		length	width	-
0.05	0.1	_	0.4			
head crest	tail crest	max				
Pool Depths						
G	Full	Scour			8	3.5
Transect ID	Full / Partial	Туре		length	width	
0.03	0.16		0.55			
head crest	tail crest	max				
Pool Depths						
F	Full	Plunge			4	3
Transect ID	Full / Partial	Туре		length	width	
0.03	3 0.05		0.5			
head crest	tail crest	max				
Pool Depths						
С	Full	Plunge			2.5	3.2
Transect ID	Full / Partial	Туре		length	width	
Х	0.08		0.3			
head crest	tail crest	max				
Pool Depths						
С	Full	Scour			4	2.6
Transect ID	Full / Partial	Туре		length	width	
0.05	5 0.05		0.6			
head crest	tail crest	max				
Pool Depths						
В	Full	Scour			6	2.3
Transect ID	Full / Partial	Type		length	width	
		Po	ols			
Н	1.6		0.6	Ν		8
G	1.5		0.8	Ν		6
G	2.3		0.45	Ν		6
G	2		0.35	Ν		6
G	4		0.4	N		6
F	3.2		0.55	Ν		4

Plunge / Scour Transect ID Full / Partial Scour В Full Number of intersection fine 25% 50% 75% 4 6 4 Transect ID Full / Partial Plunge / Scour С Full Scour

Number of inte	rsection fine			
25%		50%	75%	
12		35	3	
Transect ID	Full / Partia	ıl	Plunge / Scour	
С	Full		Plunge	
Number of inte	rsection fine			
25%		50%	75%	
8		3	2	
Transect ID	Full / Partia	ıl	Plunge / Scour	
F	Full		Plunge	
Number of inte	rsection fine			
25%	4	50%	75%	
12		28	14	
Transect ID	Full / Partia	ıl	Plunge / Scour	
G	Full		Scour	
Number of inte	rsection fine			
25%	4	50%	75%	
6		8	9	
Transect ID	Full / Partia	ıl	Plunge / Scour	
Н	Full		Scour	
Number of inte	rsection fine			
25%	4	50%	75%	
9		3	7	

4	23% 30%	137	0	
	9 3		/	
		Pebble Counts		
ID:	A2			
10%	25%	50%	75%	90%
37	7	41	52	17
8	22	25	36	9
51	26	27	28	24
ID:	B1			
10%	25%	50%	75%	90%
48	14	52	49	38
29	14	38	47	40
30	11	28	25	18
ID:	B2			
10%	25%	50%	75%	90%
49	29	20	23	33
36	59	22	29	34
51	47	29	27	16
ID:	C1			
10%	25%	50%	75%	90%
9	23	33	41	7
33	26	71	31	16

16	16	38	59	19
ID:	C2			
10%	25%	50%	75%	90%
21	26	38	66	29
57	39	8	48	17
14	33	22	53	11
ID:	D1			
10%	25%	50%	75%	90%
51	65	13	28	19
sand	29	26	24	8
sand	19	9	19	21
ID:	D2			
10%	25%	50%	75%	90%
7	18	37	83	37
14	20	22	36	16
39	24	47	11	48
ID:	E1			
10%	25%	50%	75%	90%
12	19	15	38	42
8	14	16	32	36
9	12	23	48	11
ID:	E2			
10%	25%	50%	75%	90%
56	29	48	57	13
12	52	41	114	26
27	27	43	24	51
ID:	F1			
10%	25%	50%	75%	90%
41	18	37	16	33
38	54	13	9	28
32	36	24	19	8
ID:	F2			
10%	25%	50%	75%	90%
67	28	18	21	17
48	27	52	19	43
sand	sand	31	39	41
ID:	G1			
10%	25%	50%	75%	90%
22	17	44	8	21
18	41	34	25	12
-------------	-------------------	-----------	----------	------------
24	38	9	32	46
ID	C 2			
ID:	G2	500/	750/	0.00/
24	2370 61	30%	7370	90%
10	53	22	10	40
19 20	55 61	23	19	9
29	01	29	17	0
ID:	H1			
10%	25%	50%	75%	90%
56	26	61	28	32
41	11	39	49	68
14	12	24	13	13
ID:	H2			
10%	25%	50%	75%	90%
11	37	32	44	29
22	38	16	74	9
24	16	28	28	28
ID:	I1			
10%	25%	50%	75%	90%
46	33	19	26	18
27	16	26	34	51
24	21	41	15	26
ID:	I2			
10%	25%	50%	75%	90%
7	36	58	9	43
12	37	92	32	21
31	44	21	52	34
ID.	T1			
10%	25%	50%	75%	90%
silt	8	13	41	17
33	12	18	38	24
52	8	23	54	38
ID.	12			
ID: 100/	JZ 250/	500/	750/	000/
1070	∠J%0 11	30% 21	/ 370	90%) 20
12	1 I 1 <i>A</i>	∠1 10	43 50	29 25
20 14	14 1 <i>1</i>	10	50 24	23 12
14	14	10	54	15
ID:	K1			
10%	25%	50%	75%	90%

36	8	22	15	47
32	29	21	27	21
51	9	11	14	14

Comments: Start of survey photos: upstream 945, downstream 943, right bank 942, left bank 944. End of survey photos: upstream 967, downstream 969, right bank 970, left bank 968.