

2019年 飲料用水道水 消費者信頼報告書

2019年水道水検査結果概要

2020年7月1日 在日米海軍厚木航空施設

目次:

飲料用水道システム

健康に関する重要な お知らせ

2019年 厚木航空施設 5 水道水品質情報

水道水の保護・節約 6

この報告書について、ご質問や必要な追加情報がございましたら、

厚木航空施設 施設部 UEM 給水管理係 軍電: 264-3336 または、 厚木航空施設 施設部 環境課 軍電: 264-3552 まで、ご連絡ください。

海軍作戦部長室、海軍施設部隊(CNIC)の要請により、安全飲料水法(SDWA)に基づく年間水道水質白書(消費者信頼報告書)を発表致します。

この報告書は、皆様にお届けしている水道水がどこから来るのか、何を含んでいるのか、そして海軍海外飲料水プログラム及び日本環境管理基準の飲料水基準に適合しているかの情報を提供するものです。

なお、本和訳は参考文書であり、英文が和訳に優先します。

海外飲料水プログラム

全ての在日駐留米国軍施設は、日米両国の環境法に則った日本環境管理基準(JEGS)を遵守しています。2013年には、米国飲料水安全法1970 (40 CFR 141)によるJEGS の補足としてCNICINST5090.1が発行され、2019年において厚木航空施設は米国飲料水安全法の全ての品質基準に適合しています。

厚木航空施設は、いかなる水質基準をも満たす安全な飲料水を提供しております。さらに米海軍海外飲料水(ODW) プログラムの要求事項への適合にも取り組んでいます。2018年に日本地区水道水質委員会(RWQB) から暫定の水道設備運用認証(CTO) を取得しました。この認証は、水道設備が安全で、人の飲料用に適合することを確言するものです。

正規の水道設備運用認証(full CTO) を取得するには、すべての重大不適合を解決しなければなりません。水道設備汚染の潜在的な危険性を排除するようにシステムを強化することは、この重大不適合のひとつです。

厚木航空施設は、すべての不適合の解決に取り組んでおり、その解決をもって、正規の水道設備運用認証(full CTO)を取得できる状況にあります。

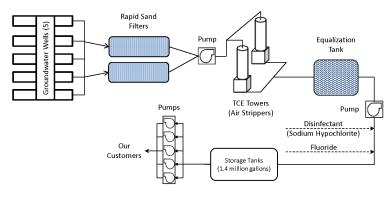


Diagram 1

厚木航空施設の飲料用水道システム

厚木航空施設の飲料用水道システムは、米海軍が管理・運営・維持し、米軍と日本政府事業の双方に、飲料に適する高品質の飲料水を供給しています。

厚木航空施設・施設部生産課・公益エネルギー係は、飲料水源 (井戸)、水処置施設、貯蔵施設、給水システム等の飲料用水道システムを維持管理する責任を担っています。

厚木航空施設では、相模野砂礫層(SGL)と座間丘陵砂礫層 (ZGL) の帯水層から、基地内に点在する5本の深井戸より汲み上げています。

2015年に、施設部は、1年間に及ぶ地表水の地下水への直接 影響調査を実施し、SGL/ZGLの帯水層と地表水(蓼川、雨水路)と の結合性を調査しました。結果、SGL、ZGL 両方の帯水層とも、地 表水の影響を受けない真の地下水系であることが判明しました。

水道水は、微粒子をフィルターで濾過し、トリクロロエチレン(TCE)をエアーストリッパーで除去し、さらに有毒細菌・ビールスを防御するために次亜塩素酸で殺菌されています。フッ素は、歯の衛生のために添加されています。上図は、厚木航空施設の浄水工程です。

水質管理

厚木航空施設・施設部(PWD)は、水道水が飲料水基準に適合して安全であることを保証すべく、定期的に水道水を検査しています。 浄水処理された水は定期的に採取され、すべての原型及び化学変化後の汚染物質の量が米国環境保護局(USEPA)規制に適合しているか、検査されています。

2019年には、取水井戸及び全配水施設中の指定箇所にて、700 以上のサンプルを採取し約2000 のテストを、週次、月次、季次、年次で実施し、認定水質検査機関による分析にて、現在供給されている水道水が高品質で人の飲料に適合しているかを検査しました。結果は、JEGSおよびSWDAの基準を十分満足するものであることを裏付けるものでした。その水質検査結果の概要は、本レポート5ページ以降に掲載しています。

以下に検査対象の含有成分についてご紹介致します。

トリクロロエチレン

トリクロロエチレン(TCE)は、有機化学工業や製薬工業の脱脂工程、乾燥工程、製造工程で溶剤として一般的に用いられている揮発性の有機化学物質です。

1990年代初頭に、厚木航空施設内の井戸水を分析したところ、飲

料水の許容値を超えるTCEが検出されました。

そのため、飲料水製造施設では、エアーストリッピング法(揮発法)を用いた処理装置で井戸水のTCE濃度を下げています。エアーストリッピング法(揮発法)とは、清浄な空気と揮発性の有機物に汚染された水とを蒸気状態で反応させることでその有機物を気体にして水から分離する方法です。この処理方法で約70~100%のTCEを除去できます。このTCE 除去装置で、TCE濃度15 ppb (微少含有比率;10億分の1)の水を処理することができます。

現在、処理前の井戸水のTCE濃度は、通常、5ppb以下であり、処理後、最大許容汚染物濃度5ppb (JEGS第3章および米国飲料水安全法に規定する米国国防省飲料水設備基準値)以下です。

TCE量を許容値以下に確実に維持するよう、源水の井戸水と配送先水道水、両方のTCE濃度を定期的に監視しています。

水質検査機関の定期検査結果においても、厚木航空施設内の水 道水は許容値を超えていません。

硝酸塩と亜硝酸塩

硝酸塩と亜硝酸塩は、窒素酸化物でさまざまな有機/無機化合物 として存在します。

水道水に含まれる硝酸塩は、主に、肥料の流出、浄化槽からの漏 出、下水、天然鉱床の侵食に由来します。

と後の汚染物質の量が米国環境保護局(USEPA)規制に適合して 生後6ヶ月未満の幼児が10ppm以上の硝酸塩を含んだ飲料水を 水るか、検査されています。 摂取すると、健康障害の危険があります。高濃度の硝酸塩摂取は、 青色児症候群を発症する可能性があります。水道水の硝酸塩濃度 2019年には、取水井戸及び全配水施設中の指定箇所にて、700 は、豪雨や農作業が原因で短時間に急激に上がることがあります。

基地内の水道配管の代表的な場所2箇所より、4半期に1度、水道水を採取し、硝酸塩と亜硝酸塩が基準値以内か検査しています。試験所検査結果によると、厚木航空施設の飲料用水道システムにおいて基準値超過はありません。詳しくは本レポート5ページ以降の水質検査表をご覧ください。

鉛と銅

普段、飲用に使われている蛇口で、鉛と銅の含有量を調査するよう法律で決められています。採水検査は、最悪状態で行うようにしています。つまり、水道水は長時間水道管内に滞留すると、鉛と銅の含有量が増加しますので、通常の飲用状況の中で、鉛と銅の含有量が最も多い一晩不使用後または日中不在後の水を、採取して検査をしています。

2019年、各住居、保育所および小学校の蛇口で、鉛と銅含有量 検査を実施し、全20箇所の蛇口にて採水検査しました。その結果、 米国環境保護局の基準を満足するものでした。また、2019年6月 には、鉛重点地域の検査を実施しました。

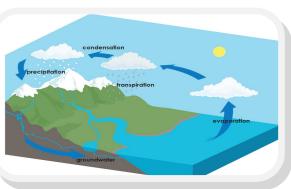
その結果、7か所、改善要求レベルを超える結果となり、再検査を 実施し、2か所はLIPA基準に適合すべく修復し、残りの五か所は今 後使用禁止としました。

鉛による健康障害(補足情報)

許容値を超える鉛含有量(本レポート5ページ参照)の飲料水を摂取した場合、重大な健康障害を引き起こすことがあります。特に妊婦や年少者の場合は、重大です。水道水中の鉛は、主に水道管の材質及び関連部品に由来します。数時間水道水を使わなかった場合、30秒から2分間ぐらい水を出しっぱなしにしてから、飲み水や料理に使うようにすれば、鉛の摂取可能性をより少なくすることがで

きます。また、温水配管から鉛が溶け出す可能性は高いので、飲み水や料理には、冷水蛇口(温水蛇口ではなく)の水を使いましょう。 温水蛇口の水で離乳食を作ってはいけません。

2015年、厚木航空施設部は、基地内の各住居、保育所および小学校の水道配管及びその付属機器にて銅・鉛が検出されるか、確認調査を実行しました。結果、水道配管系統から、銅・鉛は検出されませんでした。


飲料水中の鉛、検査方法、鉛摂取を最小限にする手順等は、安全 飲料水ホットライン800-426-4791、もしくは

http://www.epa.gov/safewater/lead より入手できます。

化学療法を受けている方、HIV/AIDSに感染している方、臓器移植患者、幼児・子供、虚弱な高齢者、妊婦やその胎児は、飲料水中の汚染物質に対する抵抗力が弱く潜在的に感染症にかかりやすいと云われています。

特別な健康管理が必要な方は、飲料水に関してさらなる予防措置を検討し、ご自身の健康管理プロバイダーにお問い合わせください。

詳細は、下記ホームページを参照ください: http://water.epa.gov/safewater

なぜ、飲料水が汚染されるの?

ボトル飲料水も含め、およそ飲料水には多少の不純物が含まれています。不純物が含まれているとしても健康危害に直結するものではありません。 詳細は、環境保護局(EPA) 安全飲料水ホットライン(800-426-4791)、もしくは、ホームページ: http://www.epa.gov/safewaterをご覧ください。

飲料水(水道水やボトル飲料)の水源は、河川、湖、池、貯水池、湧泉、井戸等です。地表面水流や地下水流には、天然鉱床が溶解していますが、時には、放射性物質や、動物や人間の活動に伴う物質が混入する場合があります。

つまり、ビールスや細菌等の微生物関連の汚染物質は、汚水処理場、浄化槽、 農場の家畜棟や原野等に由来し、無機汚染物質は、都市に降った雨水や、工場、

一般家庭、石油ガス精製所、鉱山や農場等からの排水に由来します。また、農薬・除草剤等の汚染物質は、農場、公園、住宅の庭からの排水に由来します。合成樹脂や揮発性オイル等の有機化学汚染物質は、工場の化学工程や製油工程の副産物として混入したり、ガソリンスタンド、都市、浄化槽の排水に由来します。放射性汚染物質は、石油・ガス・鉱物の採鉱により自然と流入します。

水道水を安心して飲めるよう、米国環境保護局(USEPA)規制および日本環境管理基準(JEGS)は、管理基準を定め公共水道水の不純物の量を規制しています。同様に、食品薬品局(FDA)の規制基準は公衆安全のため米国内製造のボトル飲料水に含まれる不純物限界を規定しています。

フッ素

水道水へのフッ素添加は、米国公衆衛生局(PHS)および疾病予ます。 防管理センターの推奨により、虫歯予防の公共健康施策として海軍 施策上、水道水に添加されています。フッ素添加の水道水は、安全 飲料水基準に適合していることを常にチェックされています。

砒素

JEGSおよびSWDAの安全基準を満たした飲料水にも、微量の砒素が含まれています。規制基準は、飲料水から砒素を取り除く費用と現在考えられる砒素の健康上の想定影響とのバランスを取っています。EPAは、引き続き、低濃度の砒素が人体内で濃縮され癌を発症させる鉱物ではないか、皮膚病とか循環器系のトラブルを招く健康影響に関連していないかを研究しています。

大腸菌群(大腸菌及びその類似菌)

大腸菌は、どのような環境にも自然に生息しているバクテリアの一種であり、その存在量を評価することで人に有害なバクテリアの存在確率を見積ることができます。そのため、水質検査では、清潔度を表わす指標として使われています。

大腸菌群が許容値以上検出された場合、水質問題が発生するおそれがある危険状態であることから、すぐさま改善対策が実行されます。

規制基準では、再検査で大腸菌が検出されなければ、月次通常検査での大腸菌陽性反応は許容されます。

2019年は、飲料水供給システムの定期検査では、大腸菌は検出されませんでした。

飲料用水道水検査測定方法問題

基地内の水道水は定期的に特定物資による汚染状態を検査することになっています。その定期検査結果は、衛生基準に適合しているかどうかの指標になります。

現契約水質検査機関は、2019年を通して基地内の施設で採水し総大腸菌群を検査したのですが、その水質検査機関は、米国環境 庁認定の検査測定方法でなく日本の検査測定方法に基づき分析しました。米国環境庁認定の検査測定方法に従わないことは、安全 飲料水法(SDWA)違反に当たります。この件は、緊急を要するものではありませんが、我々の顧客である水道水の消費者は、何が起 こっていてどのように是正しているかを知る権利があります。

是正措置としてNAF厚木診療所は、複数の代表地点の検査により有害なバクテリアが存在しないこと、及び飲料しても安全であることを確認致しました。 2019年からは、従来からの検査法に加え米国環境庁認定の検査測定方法による検査も実行していますが、糞便性大腸菌は検出されていません。

どうすれば良いの?

現時点において、何ら対応していただくことはありません。今までどおり、飲料していただいて結構です。もし水道水が安全でないとの 異常が見つかれば、24時間以内にお知らせ致します。

米海軍厚木航空施設 水道品質委員会

米海軍厚木航空施設水道品質委員会 (IWQB) は、2013年1月に設立されました。当委員会の目的は、水道水の品質情報/検査レポートを精査し、改善活動を進捗管理し、防空管区指揮官による厚木基地水道水の安全認証をサポートすることを通して、厚木航空施設管理建造物に法令遵守の高品質の水道水供給を保証することです。

当委員会は4半期ごとに開催され、水道水質に関する法令遵守要件について話し合われます。

"人が飲むのに適している"水道水を継続して基地関係者に供給すべく、長期的な水道水の供給効率改善・設備改善に注力してまいります。

この報告書について、ご質問や必要な追加情報がございましたら、厚木航空施設 施設部 UEM 給水管理係 軍電: 264-3336、又は、厚木航空施設 施設部 環境課 軍電: 264-3552 まで、ご連絡ください。

Page 4

2019年 飲料水 水質データ

以下の表は、2015年に採取された試料で測定された規制水質項目の状態を示す。これらの評価物質は、米国環境保護庁(EPA) 準拠 の測定法による。テスト結果は、海軍海外飲料水基準に基づき評価される。それぞれの評価物質にて、規制値、測定値の最大値、測定 値の存在範囲および測定単位を記す。典型的な汚染源についても記述。検査頻度は評価物質ごとに異なる。

規制されている汚染物質

無機化学物質:

	MCLG	MCL	Highest	測定値範囲	単位	備考/ 典型的な汚染源		
硝酸塩 (窒素として測定)	10	10	6.1	5.0 to 6.1	ppm	肥料の流出; 肥料タンク・汚泥の漏れ;		
亜硝酸塩 (窒素として測定)	1,000	1,000	ND	ND	ppb	肥料の流出; 肥料タンク・汚泥の漏れ;		
全硝酸塩・亜硝酸塩	10	10	6.1	5.0 to 6.1	ppm	肥料の流出; 肥料タンク・汚泥の漏れ;		

揮発性有機溶剤

トルエン	1,000	1,000	0.29	ND	ppb	石油製油所からの排出
------	-------	-------	------	----	-----	------------

鉛&銅

5H ∞ 2F7								
	MCLG	アクションレ ベル(AL)	AL超過数	90パーセンタ イル	単位	備考 / 典型的な汚染源		
鉛	0	15	0 of 20	2	ppb	鉛配管の腐食;自然界からの析出		
銅	1,300	1,300	0 of 20	33	ppb	銅配管の腐食;自然界からの析出		

略語解説

テスト結果に用いている略語・専門用語の説明を以下にします。ご参照ください。

ればならない汚染濃度。対策としては、処理工程の調整だけでなく、再テ スト、公報、設備改善も含む。AL は、最大許容汚染物濃度(MCL)とは等料水としての安全性を確保する制御指標であり、MCLより厳しい許容濃 価ではない。(以下のMCL 定義参照)。

Highest: 1年間の試料測定における飲料水汚染物質の最高検出値

MRDL (最大残留殺菌薬物濃度): 飲料水として許容されうる殺菌薬 物残の最高レベル。微生物からなる汚染物質を抑制するために殺菌物 質の添加は必要とされている。

MRDLG (最大残留殺菌薬物レベル目標): 健康障害が無いと期待 される若しくは健康障害が知られていない飲料水殺菌薬物のレベル。 MRDLGは、微生物からなる汚染物質を抑制する殺菌薬物の効能を反映 するものではない。

AL (アクションレベル、処置基準値): これを超えると対策実行しなけ MCLG (最大許容汚染物濃度目標): 健康障害が無いと期待される 若しくは健康障害が知られていない飲料水汚染のレベル。MCLGは、飲 度値。MCLGを超えMCLを超えない範囲の検査値は健康被害があるかど うか不明な領域。

> MCL (最大許容汚染物濃度): 飲料水として許容される汚染の最高 レベル。MCLは、実施可能な最良水処理技術によりMCLGにより近づけ ることができる。

ND: 検出されず

ppm: 100 万分の 1: 微少含有比率の単位 1ppmは、50リッターの水に一滴溶かした濃度に当たる。

ppb: 10億分の1; 微少含有比率の単位

1ppbは、オリンピック競技用の水泳プールに小さじ半分量を溶かした濃度 に当たる。

規制されている汚染物質

微生物指標:

	MCLG	MCL	Highest Level Detected	測定値範囲	単位	備考 / 典型的な汚染源		
総大腸菌群	0	0	0	0 to 0	再試験回数	自然界		
ᄴᆂ如ᄉᆛᆉᆛᄼᄼᄼᅁᆒᆂᄴ								
殺菌剤およびその副産物:								
			Lliadaaat					

AND THE OWNER OF THE PARTY OF T								
	MCLG	MCL	Highest Level Detected	測定値範囲	単位	備考 / 典型的な汚染源		
遊離塩素	4 (MRDLG, 年平均)	4(MRDL, 年平均)	0.61 (年平均)	0.25 to 0.77	ppm	微生物殺菌のために飲料水に加える 添加物		
総トリハロメタ ン(TTHM)	N/A	80 (場所ごと の4-四半期 移動平均)	2	ND to 2	ppb	飲料水の塩素殺菌により生じる 副産物		
5 ハロ酢酸 (HAA5)	N/A	60 (場所ごと の4-四半期 移動平均)	1	0 to 1	ppb	飲料水の塩素殺菌により生じる 副産物		

水道水源を保護するための心がけ:

安全な飲料水を維持するのは、我々みんなの責任です。あなたも、厚木航空施設の飲料水の水源を保護する活動に参加できます。

- 庭の芝や植物に、過度に肥料や殺虫剤を蒔かないようにしましょう。肥料や殺虫剤には、有害な化学物質が含まれています。それらが、飲料水の水源(地下水)を汚染する可能性があります。
- ペットの糞は、捨て置かず処理しましょう。
- 化学薬品の処分: 廃棄モーターオイルは、リサイクルセンターにもって行きましょう。
- 車や機械・道具の洗浄は、決められた洗浄場所で行いましょう。—その場所は、地下に有害と思われる化学物質が浸透しないように 設計されています。

水節約のための心がけ:

米国では、一軒当たり1日約1500リッター、一人当たり1日約400リッター水を消費していることをご存知ですか?費用をかけずに水を 節約することができます。小さなことの積み重ねが大きな効果を生みます。今日からはじめませんか。

- 短めのシャワーで済まそう— 5分間のシャワーで 約20リッターの水消費。お風呂につかれば、200リッター使います。
- 歯磨き、洗髪、髭剃りのときは、水を止めましょう。月2000リッター節約できます。
- 洗濯機や食器洗い機は、フル状態で使いましょう。月4000リッター節約できます。
- 植物に水をやるのは、必要なときだけにしましょう。
- トイレ・蛇口の水漏れは修理しましょう。蛇口のパッキンは安価ですし数分もあれば取り替えられます。トイレタンクの水漏れチェックには、食紅をタンクに数滴垂らしてみてください。フラッシングしないのに食紅の色が便器に出てきたら、漏れありです。修理か新しいタンクに置き換えれば、月4000リッター節約できます。
- 未来ある子供たちに、水を賢く使って節約することを教えましょう。家族みんなで、来月の水道代金を減らしましょう!!